How to achieve thread safety in synchronized methods of Java functions?
Java functions achieve thread safety through synchronization methods. Synchronized methods use the synchronized keyword. When a thread calls a synchronized method, it must first acquire the lock of the object to which the method belongs before executing the method body. Other threads trying to call the same method will be blocked until the first thread releases the lock.
How to achieve thread safety in the synchronization method of Java function
In a multi-threaded environment, in order to ensure the consistency and integrity of data , shared resources need to be synchronized. The purpose of synchronization is to ensure that only one thread can access shared resources at the same time. Java provides synchronization methods to implement this feature.
Synchronized methods
Methods in Java can be declared as synchronized methods using the synchronized
keyword. When a synchronized method is called, the thread must first acquire the lock of the object to which the method belongs before it can execute the method body. If another thread attempts to call the same synchronized method, it will be blocked until the first thread releases the lock.
Example
The following is an example that demonstrates how to use synchronous methods to protect shared resources:
public class Counter { private int count = 0; // 同步方法 public synchronized void increment() { count++; } }
increment()
The method is declared as synchronized method, which means that only one thread can execute this method at the same time.
Practical Case
The following code shows a practical case in which a synchronization method is used to protect shared resources:
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class ConcurrentCounterDemo { public static void main(String[] args) throws InterruptedException { // 创建一个共享资源 Counter counter = new Counter(); // 创建一个线程池 ExecutorService executor = Executors.newFixedThreadPool(10); // 提交任务到线程池 for (int i = 0; i < 1000; i++) { executor.submit(() -> counter.increment()); } // 等待所有任务完成 executor.shutdown(); executor.awaitTermination(1, TimeUnit.MINUTES); // 打印计数 System.out.println("最终计数:" + counter.count); } }
In this example , the increment()
method is used to concurrently increment the shared count
variable. If synchronization methods are not used, different threads may modify the count
variable at the same time, causing the final count to be incorrect. By using the synchronization method, we can ensure that only one thread can access the count
variable at the same time, thereby ensuring data consistency and integrity.
The above is the detailed content of How to achieve thread safety in synchronized methods of Java functions?. For more information, please follow other related articles on the PHP Chinese website!

JVM'sperformanceiscompetitivewithotherruntimes,offeringabalanceofspeed,safety,andproductivity.1)JVMusesJITcompilationfordynamicoptimizations.2)C offersnativeperformancebutlacksJVM'ssafetyfeatures.3)Pythonisslowerbuteasiertouse.4)JavaScript'sJITisles

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunonanyplatformwithaJVM.1)Codeiscompiledintobytecode,notmachine-specificcode.2)BytecodeisinterpretedbytheJVM,enablingcross-platformexecution.3)Developersshouldtestacross

TheJVMisanabstractcomputingmachinecrucialforrunningJavaprogramsduetoitsplatform-independentarchitecture.Itincludes:1)ClassLoaderforloadingclasses,2)RuntimeDataAreafordatastorage,3)ExecutionEnginewithInterpreter,JITCompiler,andGarbageCollectorforbytec

JVMhasacloserelationshipwiththeOSasittranslatesJavabytecodeintomachine-specificinstructions,managesmemory,andhandlesgarbagecollection.ThisrelationshipallowsJavatorunonvariousOSenvironments,butitalsopresentschallengeslikedifferentJVMbehaviorsandOS-spe

Java implementation "write once, run everywhere" is compiled into bytecode and run on a Java virtual machine (JVM). 1) Write Java code and compile it into bytecode. 2) Bytecode runs on any platform with JVM installed. 3) Use Java native interface (JNI) to handle platform-specific functions. Despite challenges such as JVM consistency and the use of platform-specific libraries, WORA greatly improves development efficiency and deployment flexibility.

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunondifferentoperatingsystemswithoutmodification.TheJVMcompilesJavacodeintoplatform-independentbytecode,whichittheninterpretsandexecutesonthespecificOS,abstractingawayOS

Javaispowerfulduetoitsplatformindependence,object-orientednature,richstandardlibrary,performancecapabilities,andstrongsecurityfeatures.1)PlatformindependenceallowsapplicationstorunonanydevicesupportingJava.2)Object-orientedprogrammingpromotesmodulara

The top Java functions include: 1) object-oriented programming, supporting polymorphism, improving code flexibility and maintainability; 2) exception handling mechanism, improving code robustness through try-catch-finally blocks; 3) garbage collection, simplifying memory management; 4) generics, enhancing type safety; 5) ambda expressions and functional programming to make the code more concise and expressive; 6) rich standard libraries, providing optimized data structures and algorithms.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Zend Studio 13.0.1
Powerful PHP integrated development environment

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
