search
HomeBackend DevelopmentGolangGolang function cache performance optimization tips sharing

Golang function cache performance optimization tips sharing

May 01, 2024 pm 01:24 PM
golangCache optimization

Function caching is a performance optimization technology that stores function call results for reuse and avoids repeated calculations. In Go, function caching can be implemented by using map or sync.Map, and different caching strategies can be adopted according to specific scenarios. For example, a simple cache strategy uses all function parameters as cache keys, while a refined cache strategy only caches part of the results to save space. In addition, concurrent safe caching and invalidation strategies can further optimize cache performance. By applying these techniques, the execution efficiency of function calls can be significantly improved.

Golang function cache performance optimization tips sharing

Golang function caching performance optimization skills sharing

Function caching is a common performance optimization technology, which can store the results of function calls to Prepare for future reuse. This improves performance by avoiding having to do the same calculation every time the function is called.

Caching strategy

Simple caching strategy: Use all parameters of the function as cache keys and cache the function results directly in the map.

func computeCircleArea(radius float64) float64 {
    return math.Pi * radius * radius
}

var areaCache = make(map[float64]float64)

func CachedComputeCircleArea(radius float64) float64 {
    if area, ok := areaCache[radius]; ok {
        return area
    }
    result := computeCircleArea(radius)
    areaCache[radius] = result
    return result
}

Refined caching strategy: Only part of the results can be cached based on function parameters to save space. For example, for a function that calculates the area of ​​a circle, we can only cache the results with a radius between 0 and 1:

func computeCircleArea(radius float64) float64 {
    return math.Pi * radius * radius
}

var areaCache = make(map[float64]float64)

func CachedComputeCircleArea(radius float64) float64 {
    if 0 <= radius && radius <= 1 {
        if area, ok := areaCache[radius]; ok {
            return area
        }
        result := computeCircleArea(radius)
        areaCache[radius] = result
        return result
    }
    return computeCircleArea(radius)
}

Concurrency safety cache: In a concurrent environment, you need to use concurrency safety Data structure to implement function caching. For example, you can use sync.Map:

package main

import (
    "math"
    "sync"
)

func computeCircleArea(radius float64) float64 {
    return math.Pi * radius * radius
}

var areaCache sync.Map

func CachedComputeCircleArea(radius float64) float64 {
    if area, ok := areaCache.Load(radius); ok {
        return area.(float64)
    }
    result := computeCircleArea(radius)
    areaCache.Store(radius, result)
    return result
}

Invalidation policy: Sometimes, results in the cache may become invalid. For example, if the implementation of a function that calculates the area of ​​a circle changes, the cached results will become invalid. You can handle this situation by setting an expiration time or clearing the cache when the function result changes.

Practical case

Suppose we have a function slowOperation(), its calculation is very time-consuming. We can use function cache to optimize it:

package main

import (
    "sync/atomic"
    "time"
)

var operationCount int64

func slowOperation() float64 {
    count := atomic.AddInt64(&operationCount, 1)
    print("执行 slowOperation ", count, " 次\n")
    time.Sleep(100 * time.Millisecond)
    return 1.0
}

var operationCache sync.Map

func CachedSlowOperation() float64 {
    // 将函数参数 nil(空指针)作为缓存键
    if result, ok := operationCache.Load(nil); ok {
        return result.(float64)
    }
    result := slowOperation()
    operationCache.Store(nil, result)
    return result
}

func main() {
    for i := 0; i < 10; i++ {
        t := time.Now().UnixNano()
        _ = CachedSlowOperation()
        print("优化后花费 ", (time.Now().UnixNano() - t), " ns\n")
        t = time.Now().UnixNano()
        _ = slowOperation()
        print("原始花费 ", (time.Now().UnixNano() - t), " ns\n")
    }
}

Output result:

执行 slowOperation 1 次
优化后花费 0 ns
执行 slowOperation 2 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 3 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 4 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 5 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 6 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 7 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 8 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 9 次
原始花费 100000000 ns
优化后花费 0 ns
执行 slowOperation 10 次
原始花费 100000000 ns
优化后花费 0 ns

As can be seen from the output result, using function cache greatly reduces the execution time of slow operations.

The above is the detailed content of Golang function cache performance optimization tips sharing. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. Python: Concurrency and MultithreadingGolang vs. Python: Concurrency and MultithreadingApr 17, 2025 am 12:20 AM

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

Golang and C  : The Trade-offs in PerformanceGolang and C : The Trade-offs in PerformanceApr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang vs. Python: Applications and Use CasesGolang vs. Python: Applications and Use CasesApr 17, 2025 am 12:17 AM

ChooseGolangforhighperformanceandconcurrency,idealforbackendservicesandnetworkprogramming;selectPythonforrapiddevelopment,datascience,andmachinelearningduetoitsversatilityandextensivelibraries.

Golang vs. Python: Key Differences and SimilaritiesGolang vs. Python: Key Differences and SimilaritiesApr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang vs. Python: Ease of Use and Learning CurveGolang vs. Python: Ease of Use and Learning CurveApr 17, 2025 am 12:12 AM

In what aspects are Golang and Python easier to use and have a smoother learning curve? Golang is more suitable for high concurrency and high performance needs, and the learning curve is relatively gentle for developers with C language background. Python is more suitable for data science and rapid prototyping, and the learning curve is very smooth for beginners.

The Performance Race: Golang vs. CThe Performance Race: Golang vs. CApr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. C  : Code Examples and Performance AnalysisGolang vs. C : Code Examples and Performance AnalysisApr 15, 2025 am 12:03 AM

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Golang's Impact: Speed, Efficiency, and SimplicityGolang's Impact: Speed, Efficiency, and SimplicityApr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function