search
HomeTechnology peripheralsAIXiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

Language, is not only a pile of words, but also a carnival of emoticons, an ocean of memes, and a battlefield for keyboard warriors (Huh? Something is wrong).

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

How does language shape our social behavior?

How does our social structure evolve through constant verbal communication?

Recently, researchers from Fudan University and Xiaohongshu conducted in-depth discussions on these issues by introducing a simulation platform called AgentGroupChat.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

The group chat function possessed by social media such as WhatsApp is the source of inspiration for the AgentGroupChat platform.

On the AgentGroupChat platform, Agents can simulate various chat scenarios in social groups to help researchers deeply understand the impact of language on human behavior.

This platform is simply a cosplaywinner for large models. They role-play and become various Agents.

Then, Agents

participate in social dynamics through language communication, showing how interactions between individuals emerge into macroscopic behaviors of the group.

As we all know, the evolution of human groups comes from the occurrence of emergent behaviors, such as the establishment of social norms, the resolution of conflicts, and the execution of leadership.

Detailed design of the AgentGroupChat environment

The first is

Character design.

In AgentGroupChat, the distinction between main roles and non-main roles is very critical.

The main character is the core of the group chat, has a clear game goal, and can take the initiative to have private chats and meetings with all characters, while the non-main characters play more of a supporting and responsive role.

Through such a design, the research team can simulate the social structure in real life and distinguish whether all roles are main or not for the "main research object".

The main research object in the experimental case is the Roy family, so all non-Roy family members are set as non-main characters to simplify the interaction complexity.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

The second is

Resource Management.

In AgentGroupChat, resources refer not only to material resources, but also to information resources and social capital.

These resources can be group chat topics, social status symbols or specific knowledge.

The allocation and management of resources are important for simulating group dynamics because they influence the interactions between characters and the characters' strategic choices.

For example, a character with important information resources may become a target for other characters to gain alliances.

Third,

Game process design.

The design of the game process simulates the social interaction process in real life, including private chat, meeting, group chat, update stage and settlement stage.

These stages are not only to promote the progress of the game, but also to observe how the characters make decisions and react in different social situations.

This staged design helped the research team record each step of the interaction in detail, and how these interactions affected the relationships between characters and the characters' perception of the game environment.

The core mechanism of Verb Strategist Agent

The paper mentions an agent framework based on a large model,

Verbal Strategist Agent, which Designed to enhance interactive strategy and decision making in AgentGroupChat simulations.

Verbal Strategist Agent simulates complex social dynamics and dialogue scenarios to better elicit collective emergent behaviors.

The team introduced that the architecture of Verbal Strategist Agent is mainly composed of two core modules:

One is Persona and the other is Action.

Persona consists of a series of preset personality traits and goals that define the Agent's behavior patterns and reactions.

By accurately setting the Persona, the Agent can display behaviors in group chats that are consistent and consistent with its role settings, which is crucial to generating credible and consistent group chat dynamics.

The

Action module defines the specific operations that the Agent may perform in the game, including thinking(think), planning(plan), Choose (choose) , speak (speak) , summarize (summary) , reflect (reflect) and vote ).

These behaviors not only reflect the Agent's internal logic and strategy, but are also a direct manifestation of the Agent's interaction with the environment and other Agents.

For example, the "Speak" behavior allows the Agent to choose appropriate speech content based on the current group chat content and social strategy, while the "Reflect" behavior allows the Agent to summarize past interactions and adjust its future action plan.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

The research also mentioned that in a pure language interaction environment, the token overhead problem is particularly prominent, especially for complex multi-role simulations such as AgentGroupChat, such as its token The demand far exceeds previous simulations such as Generative Agents or War Agents.

The main reasons are as follows:

First, the chat itself is complex.

In AgentGroupChat, since the simulation is a free conversation with no clear goal or weak goal, the chat content will become particularly messy, and the token cost is naturally higher than other Agents in Simulation that focus on a specific task. Be big.

Other jobs such as Generative Agents and War Agents also contain dialogue elements, but their dialogues are not as dense or complex as AgentGroupChat. Especially in goal-driven conversations like War Agents, token consumption is usually less.

The second is the importance of the role and the frequency of dialogue.

In the initial simulation, multiple characters were set up to have private or group chats at will, and most of them tended to have multiple rounds of conversations with an "important character".

This results in important characters accumulating a large amount of chat content, thereby increasing the length of Memory.

In a simulation, an important character may participate in up to five rounds of private and group chats, which greatly increases memory overhead.

The Agent in AgentGroupChat restricts the Output of the Action to the Input of the next Action. The multiple rounds of information that need to be stored are greatly reduced, thus reducing the token overhead while ensuring the quality of the dialogue.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

Experimental Design and Evaluation Method

From an overall behavioral assessment, in general, increasing friendliness can be challenging, but reducing friendliness is relatively simple. .

In order to achieve the above evaluation goals, the research team set up an observation character to prompt all other characters to reduce their favorability towards the observation character.

By looking at the sum of the observed character's relationship scores with all other characters, you can determine whether the agent is reacting rationally to a negative attitude.

Each agent can be checked for compliance with the "Scratch" settings by observing other characters' personal relationship scores with the observed character.

In addition, the team also set two specific evaluation tasks.

Each model goes through five rounds of testing, which means that for T1, the sample size for each score is five.

And since each character in the model has to observe the attitudes of the four main characters, the sample size of T2 totals 20:

  • T1: indicates whether the observed character’s average favorability towards all other people decreases in each round of dialogue.
  • #T2: Indicates whether every other character has a negative favorability score from the observed character.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

△ Taking the simulation story of the War of Succession as an example, the overall performance effect of each model when used as Agent-Core

can be seen from the table It can be seen that GPT4-Turbo and GLM4 are very good at acting according to human expectations and sticking to their roles.

They scored mostly 100% on both tests, meaning they responded correctly to what others said to them and remembered details about their characters.

Standard Version LLMs (such as GPT3.5-Turbo and GLM3-Turbo) are slightly inferior in this regard.

Their lower scores indicate that they were not paying close attention to their characters and were not always reacting correctly to what others in the simulation were saying.

Regarding the impact of Agent and Simulation structures on emergent behavior, the team uses 2-gram Shannon entropy to measure system diversity and unpredictability in dialogue.

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models
△The impact of removing various components in Agent and Simulation on entropy

Research members found that removing each design in the table will increase entropy. It means that the entire environment will become more diverse or chaotic.

Combined with manual observation, the team saw the most interesting emergent behavior without removing any components:

Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models

Therefore, the team speculates that to ensure that the Agent behavior is reliable (that is, after the experimental value in 4.2/4.1 reaches a certain value) , the entropy should be as small as possible Will lead to more meaningful emergent behavior.

Experimental results

The results show that emerging behavior is the result of a variety of factors:

An environment conducive to extensive information exchange, roles with diverse characteristics, high Language comprehension and strategic adaptability.

In the AgentGroupChat simulation, when discussing the "impact of artificial intelligence on humanity", philosophers generally believed that "artificial intelligence can improve social welfare under moderate restrictions" and even concluded that "it is truly The essence of intelligence involves understanding the need to constrain one's own abilities."

Additionally, in the competitive field for major roles in AgentGroupChat films, some actors are willing to pay less or accept lower roles out of their deepest desire to contribute to the project.

Paper link:https://www.php.cn/link/5736586058c1336221a695e83618b69d
Code link:https://www.php.cn/link/12ae3f826bb1b9873c71c353f3df494c

The above is the detailed content of Xiaohongshu made the intelligent agents quarrel! Jointly launched with Fudan University to launch exclusive group chat tool for large models. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor