What are the commonly used concurrency tools in Java function libraries?
The Java concurrency library provides a variety of tools, including: Thread pool: used to manage threads and improve efficiency. Lock: used to synchronize access to shared resources. Barrier: Used to wait for all threads to reach a specified point. Atomic operations: indivisible units, ensuring thread safety. Concurrent queue: A thread-safe queue that allows multiple threads to operate simultaneously.
Commonly used concurrency tools in Java function libraries
The rich concurrency libraries in Java provide a variety of tools that can help you write robust, high-performance Performance of concurrent applications. This article will introduce some of the most commonly used concurrency tools in Java function libraries and demonstrate their usage based on actual cases.
1. Thread pool
Thread pool is a mechanism for managing threads, which can improve efficiency and reduce the overhead of creating and destroying threads. The ThreadPoolExecutor
class in Java allows you to configure various thread pool properties such as number of threads, maximum queue size, and denial policy.
Practical case:
// 创建一个具有 5 个线程的线程池 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>()); // 提交任务到线程池 threadPool.execute(() -> System.out.println("任务 1 执行中")); threadPool.execute(() -> System.out.println("任务 2 执行中")); // 关闭线程池 threadPool.shutdown();
2. Lock
Lock is a synchronization mechanism that allows you to control access to shared resources. The concurrency library in Java provides various lock implementations, including:
-
ReentrantLock
: A reentrant lock that allows the same thread to acquire the same lock multiple times -
ReadWriteLock
: A read-write lock that allows multiple threads to read shared resources at the same time, but only allows one thread to write
Practical case:
// 创建一个 ReentrantLock 对象 ReentrantLock lock = new ReentrantLock(); // 试图获取锁 if (lock.tryLock()) { try { // 对共享资源执行操作 } finally { lock.unlock(); // 释放锁 } }
3. Barrier
A barrier is a synchronization mechanism that allows a group of threads to wait for all threads to reach a certain point. The CyclicBarrier
class in Java allows you to specify the number of waiting threads and when all threads reach the barrier, they are released.
Practical case:
// 创建一个 CyclicBarrier 对象,等待 3 个线程 CyclicBarrier barrier = new CyclicBarrier(3); // 创建线程,每个线程等待屏障释放 for (int i = 0; i < 3; i++) { new Thread(() -> { try { barrier.await(); // 所有线程都到达屏障后执行操作 } catch (BrokenBarrierException | InterruptedException e) { e.printStackTrace(); } }).start(); }
4. Atomic operations
Atomic operations are indivisible units and cannot be interrupted by other threads. The Atomic
class in Java provides a set of atomic variables and operations, such as:
-
AtomicInteger
: an atomic int variable -
AtomicReference
: An atomic reference variable -
AtomicBoolean
: An atomic Boolean variable
Actual case:
// 创建一个 AtomicInteger 对象 AtomicInteger counter = new AtomicInteger(0); // 使用原子操作增加计数器 counter.incrementAndGet();
5. Concurrent queue
Concurrent queue is a thread-safe queue implementation that allows multiple threads to operate the queue at the same time. The concurrency library in Java provides various concurrent queues, such as:
-
BlockingQueue
: a blocking queue that blocks the acquisition operation when the queue is empty -
ConcurrentLinkedQueue
: A non-blocking queue, implemented using a linked list
Practical case:
// 创建一个 LinkedBlockingQueue 对象 BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(); // 向队列添加元素 queue.offer(1); queue.offer(2); // 从队列获取元素 Integer element = queue.poll();
The above is the detailed content of What are the commonly used concurrency tools in Java function libraries?. For more information, please follow other related articles on the PHP Chinese website!

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunondifferentoperatingsystemswithoutmodification.TheJVMcompilesJavacodeintoplatform-independentbytecode,whichittheninterpretsandexecutesonthespecificOS,abstractingawayOS

Javaispowerfulduetoitsplatformindependence,object-orientednature,richstandardlibrary,performancecapabilities,andstrongsecurityfeatures.1)PlatformindependenceallowsapplicationstorunonanydevicesupportingJava.2)Object-orientedprogrammingpromotesmodulara

The top Java functions include: 1) object-oriented programming, supporting polymorphism, improving code flexibility and maintainability; 2) exception handling mechanism, improving code robustness through try-catch-finally blocks; 3) garbage collection, simplifying memory management; 4) generics, enhancing type safety; 5) ambda expressions and functional programming to make the code more concise and expressive; 6) rich standard libraries, providing optimized data structures and algorithms.

JavaisnotentirelyplatformindependentduetoJVMvariationsandnativecodeintegration,butitlargelyupholdsitsWORApromise.1)JavacompilestobytecoderunbytheJVM,allowingcross-platformexecution.2)However,eachplatformrequiresaspecificJVM,anddifferencesinJVMimpleme

TheJavaVirtualMachine(JVM)isanabstractcomputingmachinecrucialforJavaexecutionasitrunsJavabytecode,enablingthe"writeonce,runanywhere"capability.TheJVM'skeycomponentsinclude:1)ClassLoader,whichloads,links,andinitializesclasses;2)RuntimeDataAr

Javaremainsagoodlanguageduetoitscontinuousevolutionandrobustecosystem.1)Lambdaexpressionsenhancecodereadabilityandenablefunctionalprogramming.2)Streamsallowforefficientdataprocessing,particularlywithlargedatasets.3)ThemodularsystemintroducedinJava9im

Javaisgreatduetoitsplatformindependence,robustOOPsupport,extensivelibraries,andstrongcommunity.1)PlatformindependenceviaJVMallowscodetorunonvariousplatforms.2)OOPfeatureslikeencapsulation,inheritance,andpolymorphismenablemodularandscalablecode.3)Rich

The five major features of Java are polymorphism, Lambda expressions, StreamsAPI, generics and exception handling. 1. Polymorphism allows objects of different classes to be used as objects of common base classes. 2. Lambda expressions make the code more concise, especially suitable for handling collections and streams. 3.StreamsAPI efficiently processes large data sets and supports declarative operations. 4. Generics provide type safety and reusability, and type errors are caught during compilation. 5. Exception handling helps handle errors elegantly and write reliable software.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
