Types and usage of locks in Golang function concurrent programming
Go provides three lock types in functional concurrent programming: mutex lock (Mutex), read-write lock (RWMutex), and one-time lock (Once). Mutex locks guarantee exclusive access, read-write locks allow concurrent reads and single writes, and one-time locks ensure that a block of code is executed only once. These locks are used to coordinate access to shared resources and prevent data races. In practice, mutexes ensure data consistency in concurrent web services, preventing concurrent requests from simultaneously modifying shared data structures.
Lock types and usage in Go functional concurrent programming
In Go functional concurrent programming, locks are a synchronization mechanism used to coordinate sharing Resource access to prevent data races. Go provides multiple types of locks, each with different characteristics and applicable scenarios.
Mutex lock
Mutex lock (Mutex) is a basic lock that can only allow one goroutine to obtain resources at the same time. It guarantees exclusive access to shared resources.
import ( "sync" "fmt" ) var ( mu sync.Mutex counter int ) func main() { for i := 0; i < 1000; i++ { go func() { mu.Lock() counter++ mu.Unlock() }() } fmt.Println("Final counter value:", counter) }
Read-write lock
Read-write lock (RWMutex) allows multiple goroutines to read shared resources concurrently, but only one goroutine can write resources at the same time.
import ( "sync" "fmt" ) var ( rwmu sync.RWMutex shared []int ) func main() { // 多个 goroutine 并发读取共享切片 for i := 0; i < 1000; i++ { go func() { rwmu.RLock() fmt.Println("Read:", shared) rwmu.RUnlock() }() } // 单独的 goroutine 写入共享切片 go func() { rwmu.Lock() shared = append(shared, 1, 2, 3) rwmu.Unlock() }() }
Once
Once is a one-time lock used to ensure that a specific block of code is executed only once.
import ( "sync" "fmt" ) var ( initOnce sync.Once inited = false ) func initialize() { inited = true fmt.Println("Initialized") } func main() { initOnce.Do(initialize) if inited { fmt.Println("Already initialized") } else { fmt.Println("Not initialized") } }
Practical case: ensuring data consistency in concurrent web services
Suppose there is a web service in which multiple concurrent requests need to operate on the same shared data structure. To ensure data consistency, mutex locks can be used to protect the data structure and prevent concurrent requests from modifying it at the same time.
import ( "sync" "net/http" ) var ( mu sync.Mutex clients map[string]*http.Client ) func main() { http.HandleFunc("/addClient", func(w http.ResponseWriter, r *http.Request) { mu.Lock() clients[r.FormValue("name")] = &http.Client{} mu.Unlock() }) }
In this example, a mutex lock mu
is used to protect concurrent access to the clients
map, ensuring that only one request can add or modify customer information at the same time , thus avoiding data competition.
The above is the detailed content of Types and usage of locks in Golang function concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...

How to compare and handle three structures in Go language. In Go programming, it is sometimes necessary to compare the differences between two structures and apply these differences to the...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools