Coroutine is a lightweight thread that reuses execution units in the same call stack through explicit switching. Its life cycle includes creation, execution, suspension, recovery and completion. Use the go keyword to create a coroutine, which can be used for parallel calculations (such as calculating Fibonacci numbers) in practice.
The creation and life cycle of Golang coroutines
Introduction
Coroutines It is a lightweight thread. Coroutines are similar to threads and are independent execution units. But unlike threads, coroutines do not need to have independent call stacks like threads. Instead, they reuse the call stacks of coroutine creation functions by explicitly suspending (yield) or resuming (resume) the coroutine. Make the switch.
Create a coroutine
In Go, use the go
keyword to create a coroutine. The syntax is as follows:
go <协程体>
Among them, <coroutine body></coroutine>
represents the code block to be executed by the coroutine.
The life cycle of the coroutine
The life cycle of the coroutine is mainly divided into the following stages:
-
Creation: Coroutines are created using the
go
keyword. - Execution: The coroutine starts executing its code block.
-
Suspension: The coroutine is suspended by calling the
chan or <code>select
statement. -
Recovery: The coroutine is restored through the
or <code>select
statement. -
Complete: Coroutine execution is completed, or
close(chan)
is called.
Practical case
The following is an example of using coroutine to calculate the Fibonacci sequence:
package main import "fmt" func main() { // 创建一个协程计算斐波那契数列 go func() { first, second := 0, 1 for i := 0; i < 10; i++ { fmt.Println(first) temp := first first = second second = temp + second } }() // 主协程等待其他协程执行完成 <-make(chan bool) }
In this example, We create a goroutine to calculate the Fibonacci sequence. The main coroutine uses make(chan bool)
to create an unbuffered channel and waits for the channel to be closed. When the goroutine completes its computation, it closes the channel, thereby notifying the main goroutine of the end.
The above is the detailed content of The creation and life cycle of Golang coroutines. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment