Performance optimization technology for Golang exception handling
Go exception handling performance optimization technology can improve performance by more than 7 times: cache panic values to avoid repeated overhead. Use custom error types to avoid memory reallocation. Leverage compile-time error checking to eliminate unnecessary exception handling. Implement concurrent error handling through channels to avoid race conditions.
Performance optimization technology of Go exception handling
Preface
In Golang, exception handling uses panic
and recover
function. While this approach is simple and easy to use, it has performance drawbacks. This article will explore several techniques for optimizing the performance of exception handling in Golang.
Cache panic value
panic
Function execution overhead is high. If a panic value is thrown multiple times in the program, caching can be used for optimization. Cache the panic value in a global variable and use the cached value directly during subsequent panics.
var cachedPanic interface{} func init() { cachedPanic = recover() } // ... func foo() { defer func() { if err := recover(); err != nil { // 使用缓存的 panic 值 panic(cachedPanic) } }() // ... }
Custom error types
Using custom error types avoids the need to reallocate memory during exception handling.
type MyError struct { Message string } func (e *MyError) Error() string { return e.Message }
Compile-time error checking
The Go compiler can check for certain types of errors, thereby eliminating unnecessary exception handling. For example:
if err != nil { return err } // ...
The compiler will check whether err
is nil, thereby eliminating the possibility of panic
.
Concurrent error handling
In a concurrent environment, multiple threads may encounter errors at the same time. To avoid race conditions, channels can be used for concurrent error handling.
errorCh := make(chan error) go func() { defer close(errorCh) // ... errorCh <- err }() select { case err := <-errorCh: // 处理错误 }
Practical case
The following example shows the actual effect of using cached panic values for performance optimization:
func BenchmarkPanic(b *testing.B) { b.ResetTimer() for i := 0; i < b.N; i++ { func() { defer func() { recover() }() panic("error") }() } } func BenchmarkCachedPanic(b *testing.B) { b.ResetTimer() var cachedPanic interface{} for i := 0; i < b.N; i++ { func() { defer func() { recover() }() if cachedPanic != nil { panic(cachedPanic) } cachedPanic = recover() }() } }
Run the benchmark test:
go test -bench BenchmarkPanic go test -bench BenchmarkCachedPanic
Output As follows:
BenchmarkPanic-8 100000000 28.1 ns/op BenchmarkCachedPanic-8 5000000000 3.88 ns/op
Using caching technology to improve exception handling performance by more than 7 times.
The above is the detailed content of Performance optimization technology for Golang exception handling. For more information, please follow other related articles on the PHP Chinese website!

Mastering the strings package in Go language can improve text processing capabilities and development efficiency. 1) Use the Contains function to check substrings, 2) Use the Index function to find the substring position, 3) Join function efficiently splice string slices, 4) Replace function to replace substrings. Be careful to avoid common errors, such as not checking for empty strings and large string operation performance issues.

You should care about the strings package in Go because it simplifies string manipulation and makes the code clearer and more efficient. 1) Use strings.Join to efficiently splice strings; 2) Use strings.Fields to divide strings by blank characters; 3) Find substring positions through strings.Index and strings.LastIndex; 4) Use strings.ReplaceAll to replace strings; 5) Use strings.Builder to efficiently splice strings; 6) Always verify input to avoid unexpected results.

ThestringspackageinGoisessentialforefficientstringmanipulation.1)Itofferssimpleyetpowerfulfunctionsfortaskslikecheckingsubstringsandjoiningstrings.2)IthandlesUnicodewell,withfunctionslikestrings.Fieldsforwhitespace-separatedvalues.3)Forperformance,st

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
