Java NIO API is an advanced API for handling I/O operations, which provides better performance and scalability than traditional blocking I/O: Buffers: Between the application and the operating system A memory area for transferring data between. Channels: Abstract concept that represents the connection between an application and an I/O device. Selectors: Used to poll multiple channels to determine which channels are ready for reading and writing.
NIO API in Java I/O Streams: A Thorough Analysis
Introduction
NIO (Non-blocking I/O) API is a higher-level API in Java for handling I/O operations. It provides better performance and scalability than traditional blocking I/O, especially when handling large amounts of connections or data.
Components of NIO API
NIO API consists of the following main components:
- Buffers:A memory area used to transfer data between the application and the underlying operating system.
- Channels: Abstract concept, representing the connection between the application and the I/O device.
- Selectors: Used to poll multiple channels to determine which channels are ready for reading and writing.
How NIO works
The operation of NIO is based on an event loop:
- Create buffers and channels, initialize selections device.
- Register events of interest on the selector (for example, readable or writable).
- The selector polls registered channels to determine which channels are ready to process data.
- The selector wakes up the application thread when one or more channels are ready.
- The application reads or writes data and then deregisters the channel on the selector.
Practical case
The following is an example of writing a simple server using the NIO API:
import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.util.ArrayList; import java.util.List; public class NIOServer { private static final int PORT = 8080; private static List<SocketChannel> connectedSockets = new ArrayList<>(); public static void main(String[] args) throws IOException { // 创建服务器套接字通道 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); // 将服务器通道绑定到端口 serverSocketChannel.bind(new InetSocketAddress(PORT)); // 设置非阻塞模式 serverSocketChannel.configureBlocking(false); // 获取选择器 Selector selector = Selector.open(); // 将服务器通道注册到选择器,感兴趣的可接受事件 serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); // 事件循环 while (true) { // 阻塞,直到至少有一个通道准备好 int readyChannels = selector.select(); // 如果没有准备好的通道,则继续 if (readyChannels == 0) { continue; } // 处理准备好的通道 for (SelectionKey key : selector.selectedKeys()) { // 可接受事件 if (key.isAcceptable()) { // 接受传入的连接 SocketChannel socketChannel = serverSocketChannel.accept(); // 设置非阻塞模式 socketChannel.configureBlocking(false); // 将套接字通道注册到选择器,感兴趣的可读事件 socketChannel.register(selector, SelectionKey.OP_READ); // 添加到已连接套接字列表 connectedSockets.add(socketChannel); } // 可读事件 else if (key.isReadable()) { SocketChannel socketChannel = (SocketChannel) key.channel(); // 读取数据 ByteBuffer buffer = ByteBuffer.allocate(1024); int bytesRead = socketChannel.read(buffer); // 如果读取到EOF,则关闭套接字 if (bytesRead == -1) { socketChannel.close(); connectedSockets.remove(socketChannel); } // 处理读取到的数据 // ... } } // 清除已处理的键 selector.selectedKeys().clear(); } } }
In this example, the server listens on 8080 port and accept client connections. When a client connects, it is added to a list of connected sockets. The server uses selectors to poll connected sockets to determine which sockets are ready to read and write data.
The above is the detailed content of How does the NIO API in Java I/O streams work?. For more information, please follow other related articles on the PHP Chinese website!

Java is platform-independent because of its "write once, run everywhere" design philosophy, which relies on Java virtual machines (JVMs) and bytecode. 1) Java code is compiled into bytecode, interpreted by the JVM or compiled on the fly locally. 2) Pay attention to library dependencies, performance differences and environment configuration. 3) Using standard libraries, cross-platform testing and version management is the best practice to ensure platform independence.

Java'splatformindependenceisnotsimple;itinvolvescomplexities.1)JVMcompatibilitymustbeensuredacrossplatforms.2)Nativelibrariesandsystemcallsneedcarefulhandling.3)Dependenciesandlibrariesrequirecross-platformcompatibility.4)Performanceoptimizationacros

Java'splatformindependencebenefitswebapplicationsbyallowingcodetorunonanysystemwithaJVM,simplifyingdeploymentandscaling.Itenables:1)easydeploymentacrossdifferentservers,2)seamlessscalingacrosscloudplatforms,and3)consistentdevelopmenttodeploymentproce

TheJVMistheruntimeenvironmentforexecutingJavabytecode,crucialforJava's"writeonce,runanywhere"capability.Itmanagesmemory,executesthreads,andensuressecurity,makingitessentialforJavadeveloperstounderstandforefficientandrobustapplicationdevelop

Javaremainsatopchoicefordevelopersduetoitsplatformindependence,object-orienteddesign,strongtyping,automaticmemorymanagement,andcomprehensivestandardlibrary.ThesefeaturesmakeJavaversatileandpowerful,suitableforawiderangeofapplications,despitesomechall

Java'splatformindependencemeansdeveloperscanwritecodeonceandrunitonanydevicewithoutrecompiling.ThisisachievedthroughtheJavaVirtualMachine(JVM),whichtranslatesbytecodeintomachine-specificinstructions,allowinguniversalcompatibilityacrossplatforms.Howev

To set up the JVM, you need to follow the following steps: 1) Download and install the JDK, 2) Set environment variables, 3) Verify the installation, 4) Set the IDE, 5) Test the runner program. Setting up a JVM is not just about making it work, it also involves optimizing memory allocation, garbage collection, performance tuning, and error handling to ensure optimal operation.

ToensureJavaplatformindependence,followthesesteps:1)CompileandrunyourapplicationonmultipleplatformsusingdifferentOSandJVMversions.2)UtilizeCI/CDpipelineslikeJenkinsorGitHubActionsforautomatedcross-platformtesting.3)Usecross-platformtestingframeworkss


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver Mac version
Visual web development tools
