search
HomeTechnology peripheralsAIMore than 13 times faster than manual work, 'robot + AI' discovers the best electrolyte for batteries and accelerates materials research

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials researchEditor | Ziluo

The traditional material research and development model mainly relies on "trial and error" experimental methods or accidental discoveries, and its research and development process generally lasts 10-20 years.

Data-driven methods based on machine learning (ML) can accelerate the design of new materials for clean energy technologies. However, its practical application in materials research is still limited due to the lack of large-scale high-fidelity experimental databases.

Recently, research teams from the Pacific Northwest National Laboratory and Argonne National Laboratory in the United States designed a highly automated workflow that combines a high-throughput experimental platform with the most advanced active learning algorithms to Efficient screening of binary organic solvents with optimal solubility for the anolyte. The goal of this research is to improve the performance and stability of energy storage systems to promote the widespread application of renewable energy. Traditionally, research involving anolytes usually requires a lot of trial and error experiments, which is time-consuming and labor-intensive. Using this automated workflow, researchers can more quickly screen out suitable binary compounds. In addition to an efficient workflow designed to develop high-performance redox flow batteries, this machine learning-guided High-throughput robotic platforms provide a powerful and versatile approach to accelerate the discovery of functional materials.

The reviewer commented: "This study shows that an AI-guided robotic platform can effectively find non-intuitive combinations of solvents and electrolytes in energy applications. This work has important implications for the battery community."

The research is titled "

An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations

" and was published in "Nature Communications" on March 29, 2024 "superior.

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials researchPaper link:

https://www.nature.com/articles/s41467-024-47070-5

for It is crucial to ensure the development of clean energy technology applications and achieve deep decarbonization of electricity, so designing materials with targeted functional properties of tools is critical to developing clean energy technology applications and achieving deep decarbonization of electricity. Traditional trial-and-error methods are costly and time-consuming, so design tools are inherently expensive and time-saving.

The solubility of redox active molecules is an important factor in determining the energy density of redox flow batteries (RFB). However, electrolyte materials discovery is limited by the lack of experimental solubility data sets that are critical to exploit data-driven approaches.

Nonetheless, the development of highly soluble redox-active organic molecules (ROMs) for non-aqueous RFBs (NRFBs) remains a daunting task due to the lack of standardization of organic solvent systems and application-relevant experimental solubility data. task.

By utilizing the automated high-throughput experiment (HTE) platform, the reliability and efficiency of the "excess solute" solubility measurement method can be improved and the NRFB's solubility database can be constructed. However, even with HTE systems, the diversity of potential solvent mixtures makes the screening process more time-consuming and expensive.

Active learning (AL), and specifically Bayesian optimization (BO), has proven to be a reliable method to accelerate the search for electrolytes needed for energy storage applications. Therefore, a closed-loop experimental workflow guided by BO can be used to minimize HTE execution.

ML-guided high-throughput experimental robotic platform

Here, researchers used 2,1,3-benzothiadiazole (2,1,3 -benzothiadiazole (BTZ), a high-performance anolyte with a high degree of delocalized charge density and good chemical stability, serves as a model ROM. The focus is on studying its solubility in various organic solvents, demonstrating the potential of a machine learning-guided high-throughput experiment (HTE) robotic platform to accelerate NRFB electrolyte discovery.

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials researchIllustration: Schematic diagram of the closed-loop electrolyte screening process based on a high-throughput experimental platform guided by machine learning (ML). (Source: paper)

Specifically, the researchers designed a closed-loop solvent screening workflow consisting of two connected modules, HTE and BO. The HTE module performs sample preparation and solubility measurements via a high-throughput robotic platform. The BO component consists of a surrogate model and an acquisition function, which together act as an oracle, making solubility predictions and suggesting new solvents for evaluation.

The workflow is shown in the figure below, the specific steps are:

  • First, prepare a saturated solution of ROM and analyze the sample via the HTE platform. Next, nuclear magnetic resonance (NMR) spectra of these samples were acquired and the spectral data were used to calculate the solubility of ROM.
  • This data set is then used to train a surrogate model that is used to predict the solubility of untested samples within the search space as part of the BO process.
  • Subsequently, the acquisition function is applied within the BO framework to guide the selection of new samples, guiding the evaluation based on the balance of predicted solubility values ​​and associated uncertainties (i.e., fitness scores), thereby simplifying the discovery and analysis of potential solvents .

More than 13 times faster than manual sample processing

The automated platform can prepare saturated solutions with solute excess and quantitative nuclear magnetic resonance (qNMR) with minimal manual intervention ) sample.

With the automated HTE workflow, the total experimental time to complete the solubility measurements of 42 samples was approximately 27 hours (~39 minutes/sample, less time per sample when running more samples). This is more than 13 times faster than manually processing samples using the "excess solute" method (approximately 525 minutes per sample).

In addition to the speed increase provided by the HTE system, research also placed great emphasis on controlling experimental conditions, such as temperature (20°C) and stabilization time (8 hours), to ensure accurate measurement of BTZ solubility in various organic solvents .

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials research

Illustration: Overview of the automated high-throughput experiment (HTE) platform. (Source: Paper)

Based on a literature review and consideration of solvent properties, the researchers listed 22 potential candidate solvents for BTZ. Then, an additional 2079 binary solvents were further enumerated by combining these 22 single solvents in pairs, each with 9 different volume fractions.

Table: List of 22 candidate organic solvents and their physical and chemical properties. (Source: paper)

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials research

#The platform identifies multiple solvents from a comprehensive library of more than 2000 potential solvents, with prototype redox active molecules2,1,3 -The solubility threshold of benzothiadiazole exceeds 6.20 M. Notably, the comprehensive strategy required solubility assessment for less than 10% of drug candidates, highlighting the efficiency of the new approach.

More than 13 times faster than manual work, robot + AI discovers the best electrolyte for batteries and accelerates materials research

Illustration: Identification of required electrolytes via Bayesian Optimization (BO). (Source: paper)

The research results also show that binary solvent mixtures, especially those incorporating 1,4-dioxane (1,4-dioxane), help improve the BTZ solubility.

In conclusion, the study demonstrates an ML-guided HTE platform for electrolyte screening, where ML predictions and automated experiments work together to effectively screen binary organic solvents with optimal solubility for BTZ.

This research not only helps connect the fields of data science and traditional experimental science, but also lays the foundation for the future development of an autonomous platform dedicated to battery electrolyte screening.

The above is the detailed content of More than 13 times faster than manual work, 'robot + AI' discovers the best electrolyte for batteries and accelerates materials research. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:机器之心. If there is any infringement, please contact admin@php.cn delete
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法Sep 07, 2023 pm 11:21 PM

本文将介绍一种通过BEVSketch布局来精确生成多视角街景图片的方法在自动驾驶领域,图像合成被广泛应用于提升下游感知任务的性能在计算机视觉领域,提升感知模型性能的一个长期存在的研究难题是通过合成图像来实现。在以视觉为中心的自动驾驶系统中,使用多视角摄像头,这个问题变得更加突出,因为有些长尾场景是永远无法收集到的根据图1(a)所示,现有的生成方法将语义分割风格的BEV结构输入生成网络,并输出合理的多视角图像。在仅根据场景级指标进行评估时,现有方法似乎能合成照片般逼真的街景图像。然而,一旦放大,我

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.