Efficient algorithms for calculating the intersection of ordered arrays in Golang include: comparison one by one (O(mn)), binary search (O(m log n) or O(n log m)), and using map (O(m n) ), where m and n are the lengths of the array.
Efficient Algorithm for Array Intersection in Golang
Computing the intersection of two ordered arrays is a common task in Golang. There are several algorithms for solving this problem, ranging from simple one-by-one comparisons to efficient methods that utilize binary searches and advanced data structures.
Compare one by one
The simplest way is to compare each element in the two arrays sequentially. When a matching element is found, it is added to the resulting array. However, this approach has a time complexity of O(mn), where m and n are the lengths of the two arrays. This approach can become very slow when the array is large.
func intersect_naive(arr1, arr2 []int) []int { result := []int{} for i := 0; i < len(arr1); i++ { for j := 0; j < len(arr2); j++ { if arr1[i] == arr2[j] { result = append(result, arr1[i]) } } } return result }
Binary Search
A more efficient method is to use binary search. For each element in the array, we can use binary search to check if it is in another array. This results in a time complexity of O(m log n) or O(n log m), depending on the size of the array.
func intersect_binary_search(arr1, arr2 []int) []int { result := []int{} for _, v := range arr1 { if exists := binarySearch(arr2, v); exists { result = append(result, v) } } return result } func binarySearch(arr []int, target int) bool { left, right := 0, len(arr)-1 for left <= right { mid := left + (right-left)/2 if arr[mid] == target { return true } else if arr[mid] < target { left = mid + 1 } else { right = mid - 1 } } return false }
Use map
Using map (hash table) is another efficient way to calculate intersection. We can store the elements in an array as keys in a map and record the number of times each element appears. Then we iterate through another array and check if each element is in the map. If it exists, we add it to the results array and update the count. This results in a time complexity of O(m n), where m and n are the lengths of the two arrays.
func intersect_map(arr1, arr2 []int) []int { result := []int{} m := make(map[int]int) for _, v := range arr1 { m[v]++ } for _, v := range arr2 { if count, ok := m[v]; ok { result = append(result, v) count-- if count == 0 { delete(m, v) } else { m[v] = count } } } return result }
Practical case
The following is a practical case using the intersection algorithm:
arr1 := []int{1, 2, 3, 4, 5} arr2 := []int{3, 4, 5, 6, 7} result := intersect_map(arr1, arr2) fmt.Println(result) // 输出:[3, 4, 5]
In this example, the intersect_map
function is used to calculate two The intersection of ordered arrays, the result is stored in the result
variable.
The above is the detailed content of Efficient algorithm for array intersection in Golang. For more information, please follow other related articles on the PHP Chinese website!

Mastering the strings package in Go language can improve text processing capabilities and development efficiency. 1) Use the Contains function to check substrings, 2) Use the Index function to find the substring position, 3) Join function efficiently splice string slices, 4) Replace function to replace substrings. Be careful to avoid common errors, such as not checking for empty strings and large string operation performance issues.

You should care about the strings package in Go because it simplifies string manipulation and makes the code clearer and more efficient. 1) Use strings.Join to efficiently splice strings; 2) Use strings.Fields to divide strings by blank characters; 3) Find substring positions through strings.Index and strings.LastIndex; 4) Use strings.ReplaceAll to replace strings; 5) Use strings.Builder to efficiently splice strings; 6) Always verify input to avoid unexpected results.

ThestringspackageinGoisessentialforefficientstringmanipulation.1)Itofferssimpleyetpowerfulfunctionsfortaskslikecheckingsubstringsandjoiningstrings.2)IthandlesUnicodewell,withfunctionslikestrings.Fieldsforwhitespace-separatedvalues.3)Forperformance,st

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version
Useful JavaScript development tools
