


Detailed explanation of GQA, the attention mechanism commonly used in large models, and Pytorch code implementation
Grouped Query Attention (Grouped Query Attention) is a multi-query attention method in large language models. Its goal is to achieve the quality of MHA while maintaining the speed of MQA. Grouped Query Attention groups queries so that queries within each group share the same attention weight, which helps reduce computational complexity and increase inference speed.
In this article, we will explain the idea of GQA and how to translate it into code.
GQA is proposed in the paper GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints paper. It is a fairly simple and clean idea, and is built on multi-head attention. above strength.
GQA
The standard multi-head attention layer (MHA) consists of H query heads, key heads and Value header composition. Each head has D dimensions. The Pytorch code is as follows:
from torch.nn.functional import scaled_dot_product_attention # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 8, 64) value = torch.randn(1, 256, 8, 64) output = scaled_dot_product_attention(query, key, value) print(output.shape) # torch.Size([1, 256, 8, 64])
For each query header, there is a corresponding key. This process is shown in the figure below:
And GQA divides the query header into G groups, and each group shares a key and value. It can be expressed as:
Using visual expression, you can clearly understand the working principle of GQA, just like what we said above. GQA is a fairly simple and clean idea.
Pytorch code implementation
Let us write code to divide the query header into G groups, each group sharing a key and value . We can use the einops library to efficiently perform complex operations on tensors.
First, define the query, keys, and values. Then set the number of attention heads. The number is arbitrary, but it must be ensured that num_heads_for_query % num_heads_for_key = 0, which means it must be divisible. Our definition is as follows:
import torch # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 2, 64) value = torch.randn(1, 256, 2, 64) num_head_groups = query.shape[2] // key.shape[2] print(num_head_groups) # each group is of size 4 since there are 2 kv_heads
To improve efficiency, swapping the seq_len and num_heads dimensions, einops can be done simply as follows:
from einops import rearrange query = rearrange(query, "b n h d -> b h n d") key = rearrange(key, "b s h d -> b h s d") value = rearrange(value, "b s h d -> b h s d")
Then the concept of "grouping" needs to be introduced into the query matrix.
from einops import rearrange query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups) print(query.shape) # torch.Size([1, 4, 2, 256, 64])
With the code above we reshape 2D into 2D: for the tensor we defined, the original dimension 8 (the number of heads in the query) is now Split into two groups (to match the number of heads in keys and values), each group size 4.
The last and hardest part is calculating the attention score. But in fact, it can be done in one line through the insum operation. The
from einops import einsum, rearrange # g stands for the number of groups # h stands for the hidden dim # n and s are equal and stands for sequence length scores = einsum(query, key, "b g h n d, b h s d -> b h n s") print(scores.shape) # torch.Size([1, 2, 256, 256])
scores tensor has the same shape as the value tensor above. Let’s see how it works
einsum does two things for us:
1. A query and matrix multiplication of keys . In our case, the shapes of these tensors are (1,4,2,256,64) and (1,2,256,64), so matrix multiplication along the last two dimensions gives us (1,4,2,256,256).
2. Sum the elements in the second dimension (dimension g) - if the dimension is omitted in the specified output shape, einsum will automatically complete this work, so The summation is used to match the number of keys and values in the header.
Finally, note the standard multiplication of fractions and values:
import torch.nn.functional as F scale = query.size(-1) ** 0.5 attention = F.softmax(similarity / scale, dim=-1) # here we do just a standard matrix multiplication out = einsum(attention, value, "b h n s, b h s d -> b h n d") # finally, just reshape back to the (batch_size, seq_len, num_kv_heads, hidden_dim) out = rearrange(out, "b h n d -> b n h d") print(out.shape) # torch.Size([1, 256, 2, 64])
The simplest GQA implementation is now complete, requiring less than 16 lines of python code:
Finally, I will briefly mention A word about MQA: Multiple Query Attention (MQA) is another popular method to simplify MHA. All queries will share the same keys and values. The schematic diagram is as follows:
As you can see, both MQA and MHA can be derived from GQA. GQA with a single key and value is equivalent to MQA, while GQA with groups equal to the number of headers is equivalent to MHA.
What are the benefits of GQA?
GQA is one between the best performance (MQA) and the best model quality (MHA) Very good trade-off.
The following figure shows that using GQA, you can obtain almost the same model quality as MHA, while increasing the processing time by 3 times, reaching the performance of MQA. This may be essential for high load systems.
There is no official implementation of GQA in pytorch. So I found a better unofficial implementation. If you are interested, you can try it:
https://www.php.cn/link/5b52e27a9d5bf294f5b593c4c071500e
GQA paper:
The above is the detailed content of Detailed explanation of GQA, the attention mechanism commonly used in large models, and Pytorch code implementation. For more information, please follow other related articles on the PHP Chinese website!

https://undressaitool.ai/ is Powerful mobile app with advanced AI features for adult content. Create AI-generated pornographic images or videos now!

Tutorial on using undressAI to create pornographic pictures/videos: 1. Open the corresponding tool web link; 2. Click the tool button; 3. Upload the required content for production according to the page prompts; 4. Save and enjoy the results.

The official address of undress AI is:https://undressaitool.ai/;undressAI is Powerful mobile app with advanced AI features for adult content. Create AI-generated pornographic images or videos now!

Tutorial on using undressAI to create pornographic pictures/videos: 1. Open the corresponding tool web link; 2. Click the tool button; 3. Upload the required content for production according to the page prompts; 4. Save and enjoy the results.

The official address of undress AI is:https://undressaitool.ai/;undressAI is Powerful mobile app with advanced AI features for adult content. Create AI-generated pornographic images or videos now!

Tutorial on using undressAI to create pornographic pictures/videos: 1. Open the corresponding tool web link; 2. Click the tool button; 3. Upload the required content for production according to the page prompts; 4. Save and enjoy the results.
![[Ghibli-style images with AI] Introducing how to create free images with ChatGPT and copyright](https://img.php.cn/upload/article/001/242/473/174707263295098.jpg?x-oss-process=image/resize,p_40)
The latest model GPT-4o released by OpenAI not only can generate text, but also has image generation functions, which has attracted widespread attention. The most eye-catching feature is the generation of "Ghibli-style illustrations". Simply upload the photo to ChatGPT and give simple instructions to generate a dreamy image like a work in Studio Ghibli. This article will explain in detail the actual operation process, the effect experience, as well as the errors and copyright issues that need to be paid attention to. For details of the latest model "o3" released by OpenAI, please click here⬇️ Detailed explanation of OpenAI o3 (ChatGPT o3): Features, pricing system and o4-mini introduction Please click here for the English version of Ghibli-style article⬇️ Create Ji with ChatGPT

As a new communication method, the use and introduction of ChatGPT in local governments is attracting attention. While this trend is progressing in a wide range of areas, some local governments have declined to use ChatGPT. In this article, we will introduce examples of ChatGPT implementation in local governments. We will explore how we are achieving quality and efficiency improvements in local government services through a variety of reform examples, including supporting document creation and dialogue with citizens. Not only local government officials who aim to reduce staff workload and improve convenience for citizens, but also all interested in advanced use cases.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1
Easy-to-use and free code editor

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
