Home  >  Article  >  Technology peripherals  >  DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

PHPz
PHPzforward
2024-03-30 18:01:32363browse

The illusion of big models is finally coming to an end?

Today, a post on the social media platform Reddit caused heated discussions among netizens. The post discusses a paper "Long-form factuality in large language models" submitted by Google DeepMind yesterday. The methods and results proposed in the article make people conclude that the illusion of large language models is no longer a problem. .

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

We know that large language models often generate statements containing factual errors when responding to open-ended fact-seeking questions. content. DeepMind has conducted some exploratory research into this phenomenon.

To benchmark a model's long-form factuality in the open domain, the researchers used GPT-4 to generate LongFact, a prompt containing 38 topics and thousands of questions. set. They then proposed using the Search Augmented Fact Evaluator (SAFE) to use the LLM agent as an automatic evaluator of long-form factuality. The purpose of SAFE is to improve the accuracy of factual credibility evaluators.

Regarding SAFE, using LLM can explain the accuracy of each instance more accurately. This multi-step reasoning process involves sending a search query to Google Search and determining whether the search results support a certain instance.

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

Paper address: https://arxiv.org/pdf/2403.18802.pdf

GitHub Address: https://github.com/google-deepmind/long-form-factuality

In addition, the researcher proposed to expand the F1 score (F1@K) into a long-form practical Aggregation indicators. They balance the percentage of facts supported in the response (precision) with the percentage of facts provided relative to a hyperparameter that represents the user's preferred response length (recall).

Empirical results show that LLM agents can achieve rating performance that exceeds that of humans. On a set of ~16k individual facts, SAFE agrees with human annotators 72% of the time, and on a random subset of 100 disagreement cases, SAFE wins 76% of the time. At the same time, SAFE is more than 20 times cheaper than human annotators.

The researchers also used LongFact to benchmark 13 popular language models in four large model series (Gemini, GPT, Claude and PaLM-2), and found that Larger language models often achieve better long-form factuality.

Quoc V. Le, one of the authors of the paper and a research scientist at Google, said that this new work on evaluating and benchmarking long-form factuality proposes a new data set, a new Evaluation method and an aggregate metric that takes into account both precision and recall. At the same time, all data and code will be open source for future work.

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

Overview of Method

LONGFACT: Generating long-form factual multi-topic benchmarks using LLM

First look at the LongFact prompt set generated using GPT-4, which contains 2280 fact-seeking prompts that require long-form responses across 38 manually selected topics. The researchers say LongFact is the first prompt set for assessing long-form factuality in a variety of fields.

LongFact consists of two tasks: LongFact-Concepts and LongFact-Objects, distinguished by whether the question asks about concepts or objects. The researchers generated 30 unique cues for each subject, resulting in 1140 cues for each task.

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

SAFE: LLM agent as factual automatic rater

Researchers proposed the Search Enhanced Fact Evaluator (SAFE), which operates as follows:

a) Split long responses into separate Independent facts;

b) Determine whether each individual fact is relevant to answer the prompt in the context;

c) 関連する事実ごとに、複数ステップのプロセスで Google 検索クエリを繰り返し発行し、検索結果がその事実を裏付けるかどうかを推論します。

彼らは、SAFE の主要な革新は、言語モデルをエージェントとして使用して、複数ステップの Google 検索クエリを生成し、検索結果が事実を裏付けるかどうかを慎重に推論することであると考えています。以下の図 3 は、推論チェーンの例を示しています。

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

長い応答を個別の独立した事実に分割するために、研究者らはまず、言語モデルに長い応答内の各文を個々の事実に分割するよう指示しました。次に、曖昧な参照 (代名詞など) を応答コンテキスト内で参照する正しいエンティティに置き換えるようモデルに指示することで、個々のファクトを独立したものに変更します。

それぞれの独立した事実をスコアリングするために、言語モデルを使用して、その事実が応答コンテキストで回答されたプロンプトに関連しているかどうかを推論し、複数ステップの方法を使用してランク付けしました。残りの各関連事実は、「支持される」または「支持されない」として評価されます。詳細を以下の図 1 に示します。

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

#各ステップで、モデルはスコア付けされるファクトと以前に取得した検索結果に基づいて検索クエリを生成します。一定数のステップの後、モデルは推論を実行して、検索結果がその事実を裏付けるかどうかを判断します (上の図 3 を参照)。すべての事実が評価された後、特定のプロンプト応答ペアに対する SAFE の出力メトリックは、「裏付けとなる」事実の数、「無関係な」事実の数、および「サポートされない」事実の数になります。

#実験結果

#LLM エージェントは人間よりも優れたファクト アノテーターになる

SAFE を使用して取得されたアノテーションの品質を定量的に評価するために、研究者らはクラウドソーシングによる人間によるアノテーションを使用しました。データには 496 のプロンプト応答ペアが含まれており、応答は手動で個々の事実 (合計 16,011 個の個々の事実) に分割され、個々の事実はサポートされている、無関係である、またはサポートされていないとして手動でラベル付けされました。

彼らは、各ファクトについて SAFE アノテーションと人間によるアノテーションを直接比較したところ、以下の図 4 に示すように、SAFE が個々のファクトの 72.0% について人間と一致していることがわかりました。これは、SAFE がほとんどの個別の事実に対して人間レベルのパフォーマンスを達成していることを示しています。次に、SAFE の注釈が人間の評価者の注釈と一致しない、ランダムなインタビューから得られた 100 の個別の事実のサブセットが検査されました。

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

研究者は各事実に手動で注釈を付け直しました (より包括的な注釈を得るために Wikipedia だけでなく Google 検索にアクセスできるようにしました)。そしてこれらのラベルを使用しました地上の真実として。彼らは、これらの不一致のケースでは、SAFE アノテーションが 76% の確率で正しかったのに対し、人間によるアノテーションは 19% の確率でしか正さなかったため、SAFE の勝率は 4 対 1 であることがわかりました。詳細を以下の図 5 に示します。

ここで注目すべきは 2 つのアノテーション プランの価格です。人間の注釈を使用して単一のモデル応答を評価するコストは 4 ドルですが、GPT-3.5-Turbo と Serper API を使用した SAFE はわずか 0.19 ドルです。

DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

Gemini、GPT、Claude、PaLM-2 シリーズのベンチマーク

##最後に研究者らは、以下の表 1 の 4 つのモデル シリーズ (Gemini、GPT、Claude、PaLM-2) の 13 個の大規模言語モデルに対して、LongFact に関する広範なベンチマーク テストを実施しました。

具体的には、LongFact-Objects の 250 プロンプトの同じランダムなサブセットを使用して各モデルを評価し、次に SAFE を使用して各モデルの応答の生の評価メトリクスを取得しました。集計用の F1@K インジケーター。

一般に、言語モデルが大きいほど、長い形式の事実性が向上することがわかりました。以下の図 6 と表 2 に示すように、GPT-4-Turbo は GPT-4 よりも優れており、GPT-4 は GPT-3.5-Turbo よりも優れており、Gemini-Ultra は Gemini-Pro よりも優れており、PaLM-2-L よりも優れています。 -IT-RLHF PaLM-2-L-IT よりも優れています。


DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source

#技術的な詳細と実験結果については、元の論文を参照してください。

The above is the detailed content of DeepMind ends the illusion of large models? Labeling facts is more reliable than humans, 20 times cheaper, and fully open source. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:51cto.com. If there is any infringement, please contact admin@php.cn delete