Go language is an open source programming language originally developed by Google to improve programmer efficiency and system performance. The Go language supports concurrent programming, which means executing multiple tasks at the same time. The use of locks is a common way to ensure concurrency safety. In this article, we will explore how to use locks in the Go language to ensure the correctness of concurrent programs and give specific code examples.
Why locks are needed
In concurrent programming, when multiple goroutines (lightweight threads in Go language) access shared variables or resources at the same time, race conditions (Race Condition). Race conditions can lead to data inconsistency and even program crashes. In order to avoid this situation from happening, we need to use locks to control and protect shared resources.
Mutex (Mutex)
Mutex is the most common type of lock. Mutex can ensure that only one goroutine can access shared resources at the same time. In the Go language, you can use the Mutex
type in the sync
package to implement a mutex lock.
The following is a simple sample code:
package main import ( "fmt" "sync" ) var ( balance int mu sync.Mutex ) func deposit(amount int) { mu.Lock() defer mu.Unlock() balance += amount } func main() { var wg sync.WaitGroup for i := 0; i < 1000; i++ { wg.Add(1) go func() { deposit(10) wg.Done() }() } wg.Wait() fmt.Println("Final balance:", balance) }
In the above code, we define a global variable balance
to represent the account balance, and a mutex lockmu
is used to protect access to balance
. The deposit
function is responsible for depositing the amount into the account. During the deposit process, you need to call mu.Lock()
to lock it, and then call mu.Unlock(() after the operation is completed. )
to unlock.
In the main
function, start 1000 goroutines to perform deposit operations concurrently, wait for all goroutines to be executed through sync.WaitGroup
, and finally print out the final account balance.
Read-write lock (RWMutex)
In addition to mutex locks, the Go language also provides read-write locks (RWMutex) to achieve scenarios where more reading is done and less writing is done. Read-write locks allow multiple goroutines to read shared resources at the same time, but will block all read operations when there are write operations.
The following is a sample code using a read-write lock:
package main import ( "fmt" "sync" ) var ( data map[string]string mu sync.RWMutex ) func readData(key string) string { mu.RLock() defer mu.RUnlock() return data[key] } func writeData(key, value string) { mu.Lock() defer mu.Unlock() data[key] = value } func main() { data = make(map[string]string) var wg sync.WaitGroup for i := 0; i < 100; i++ { wg.Add(1) go func() { for j := 0; j < 1000; j++ { key := fmt.Sprintf("key%d", j) value := fmt.Sprintf("value%d", j) writeData(key, value) fmt.Println(readData(key)) } wg.Done() }() } wg.Wait() }
In the above code, we define a data
variable as a shared data storage, and a Read-write lock mu
is used to protect concurrent access to data
. The readData
function is used to read the data of the specified key, calling mu.RLock()
for read locking; the writeData
function is used to write key-value data, Call mu.Lock()
for write locking.
In the main
function, start 100 goroutines to concurrently perform read and write operations, and print each read data through fmt.Println
. Using read-write locks can improve the concurrency performance of the program and ensure that reading operations of data are not blocked by writing operations.
Summary
Through the introduction of this article, we understand the importance of using locks in concurrent programming in Go language, and how to use mutex locks and read-write locks to protect shared resources and avoid competition. occurrence of state conditions. In actual development, reasonable use of locks can improve the concurrency performance of the program and ensure the correctness of the program. I hope this article can help readers better understand the application of locks in concurrent programming in Go language.
The above is the detailed content of Lock application in concurrent programming in Go language. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

闭包(closure)是一个函数以及其捆绑的周边环境状态(lexical environment,词法环境)的引用的组合。 换而言之,闭包让开发者可以从内部函数访问外部函数的作用域。 闭包会随着函数的创建而被同时创建。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software