search
HomeBackend DevelopmentPython TutorialPython Pandas practical drill, a guide to data processing from theory to practice!

Python Pandas 实战演练,从理论到实践的数据处理指南!

python pandas is a powerful data analysis and processing library. It provides a comprehensive set of tools that can perform a variety of tasks from data loading and cleaning to data transformation and modeling. This hands-on walkthrough will guide you through mastering Pandas from theory to practice, helping you effectively process data and derive insights from it.

Data loading and cleaning

  • Load data from CSV and Excel files using the read_csv() and read_<strong class="keylink">excel</strong>() functions.
  • Use the head() and info() functions to preview data structures and data types.
  • Handle missing values ​​and duplicate data using the dropna(), fillna() and drop_duplicates() functions.

Data conversion

  • Use the rename() and assign() functions to rename columns and add new columns.
  • Use the astype() and to_datetime() functions to convert the data type.
  • Use the groupby() and agg() functions to group and aggregate data.

Data Modeling

  • Concatenate and merge data sets using the concat() and merge() functions.
  • Use the query() and filter() functions to filter data.
  • Use the sort_values() and nlargest() functions to sort the data.

data visualization

  • Use the plot() function to create basic charts such as histograms, line charts, and scatter plots.
  • Use the Seaborn library to create more advanced charts such as heat maps, histograms, and boxplots.

Practical case

Case 1: Analyzing sales data

  • Load sales data CSV file.
  • Clean missing values ​​and duplicate data.
  • Calculate the total sales of each product.
  • Create a chart showing the top 10 selling products.

Case 2: Predicting Customer Churn

  • Load customer data Excel file.
  • Clean data and create feature engineering.
  • Use Machine Learningmodel to predict customer churn rate.
  • Analyze model results and make recommendations to reduce churn rate.

Best Practices

  • Always preview and understand the data you work with.
  • Use appropriate data types and naming conventions.
  • Handle missing values ​​and outliers.
  • Document the data transformation and modeling steps you do.
  • Use Visualization to explore data and communicate insights.

in conclusion

Mastering Pandas can greatly enhance your ability to process and analyze data. By following the steps outlined in this practical walkthrough, you can efficiently load, clean, transform, model, and visualize data, extract valuable insights from your data, and make better decisions. Mastering Pandas will provide you with a solid foundation for working in data science and analytics in a variety of fields.

The above is the detailed content of Python Pandas practical drill, a guide to data processing from theory to practice!. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

Learn the Differences Between Python's 'for' and 'while' LoopsLearn the Differences Between Python's 'for' and 'while' LoopsMay 08, 2025 am 12:11 AM

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

Python concatenate lists with duplicatesPython concatenate lists with duplicatesMay 08, 2025 am 12:09 AM

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

Python List Concatenation Performance: Speed ComparisonPython List Concatenation Performance: Speed ComparisonMay 08, 2025 am 12:09 AM

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

How do you insert elements into a Python list?How do you insert elements into a Python list?May 08, 2025 am 12:07 AM

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Are Python lists dynamic arrays or linked lists under the hood?Are Python lists dynamic arrays or linked lists under the hood?May 07, 2025 am 12:16 AM

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

How do you remove elements from a Python list?How do you remove elements from a Python list?May 07, 2025 am 12:15 AM

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

What should you check if you get a 'Permission denied' error when trying to run a script?What should you check if you get a 'Permission denied' error when trying to run a script?May 07, 2025 am 12:12 AM

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function