


Three parts of the Linux process and their functions
Linux operating system is a widely used open source operating system that uses multitasking to manage processes. Process is one of the most important concepts in the operating system. When a program is running, it will be assigned by the operating system as one or more processes. The Linux process can be divided into three parts: process control block (PCB), kernel stack and user stack. This article will introduce the functions of these three parts in detail and give corresponding code examples to illustrate their practical application.
1. Process Control Block (PCB)
The process control block is a data structure used in the operating system to manage process information. In the Linux system, each process has a corresponding process control block, which is used to save the status, identifier, priority and other information of the process. When a process is created, the operating system allocates a new process control block to it to track and manage the running of the process.
The following is a simple C language program that shows how to create a new process in a Linux system and access its process control block information:
#include <stdio.h> #include <sys/types.h> #include <unistd.h> int main() { pid_t pid = fork(); if (pid == 0) { printf("Child process PID: %d ", getpid()); } else { printf("Parent process PID: %d ", getpid()); } return 0; }
In this sample program, a new child process is created by calling the fork() function. The fork() function will return a new process ID. The parent and child processes can be distinguished by judging the size of the return value, and the PID of the current process can be obtained through the getpid() function.
2. Kernel stack
The kernel stack is a data structure used by each process to save temporary data and status information in the kernel state. When a process is executed in kernel mode, the kernel stack is used to save information such as parameters, local variables, return addresses, etc. of function calls. The kernel stack plays an important role during process switching or system calls to ensure that data confusion does not occur when the process is running in the kernel state.
The following is a simple assembly code snippet showing the use of the kernel stack:
section .data message db 'Hello, World!', 0 section.text global_start _start: mov eax, 4; sys_write mov ebx, 1 ; file descriptor stdout mov ecx, message; message address mov edx, 13; message length int 0x80; trigger system call
In this assembly code, the kernel mode system call sys_write is used to output a string to the console. By saving parameters in registers, data conflicts caused by using the user-mode stack in kernel mode can be avoided.
3. User stack
The user stack is a data structure used to save parameters, local variables and other data for function calls in user mode. Each process uses its own user stack when running to maintain the context of program execution. When a process switches from user mode to kernel mode, the data in the user stack will be saved in the kernel stack for later recovery.
The following is a simple C language program showing the use of the user stack:
#include <stdio.h> void func(int n) { int result = n * n; printf("Result: %d ", result); } int main() { int num = 5; func(num); return 0; }
In this sample program, a simple function func is defined to calculate the square of the input parameter, and the function is called in the main function. During the function call, the parameter n and the local variable result will be saved in the user stack, ensuring the correct execution of the function call.
To sum up, the process in the Linux operating system can be divided into three parts: process control block, kernel stack and user stack. Each part has different roles and functions. Understanding the principles and practical applications of these parts will help us better understand the mechanism of process management and write more efficient and stable programs.
The above is the detailed content of Three parts of the Linux process and their functions. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools
