Home >Backend Development >Python Tutorial >Get started quickly with Python Pandas, and learn how to process data like a cook!
pandas is a powerful python data processing library that excels in data analysis, cleaning and transformation Brilliant. Its flexible data structure and rich functions make it a powerful tool for data processing.
Data structure: DataFrame
DataFrame is the core data structure of Pandas, which is similar to a table and consists of rows and columns. Each row represents a data record, and each column represents an attribute of the record.
Data loading and reading
pd.read_csv("filename.csv")
pd.read_<strong class="keylink">excel</strong>("filename.xlsx")
pd.read_<strong class="keylink">JSON</strong>("filename.<strong class="keylink">js</strong>on")
Data Cleaning
df.fillna(0)
(Fill missing values with 0)df.drop_duplicates()
df["column"].astype(int)
(Convert a column from object type to integer type)Data conversion
pd.merge(df1, df2, on="column_name")
pd.concat([df1, df2], axis=1)
(Connect by column)df.groupby("column_name").agg({"column_name": "mean"})
(Group by column and calculate the average)data analysis
df.describe()
(calculate mean, median, standard deviation, etc.)df.plot()
(generate bar charts, line charts, etc.)df.agg({"column_name": "sum"})
(calculate the sum of a column)Advanced Features
df[df["column_name"] > 10]
df[df["column_name"].str.cont<strong class="keylink">ai</strong>ns("pattern")]
df["new_column"] = df["old_column"].apply(my_funct<strong class="keylink">io</strong>n)
Example
import pandas as pd # Load data from CSV file df = pd.read_csv("sales_data.csv") # Clean data df.fillna(0, inplace=True) # Fill in missing values # Convert data df["sale_date"] = pd.to_datetime(df["sale_date"]) # Convert date column to datetime type # analyze data print(df.describe()) # Display descriptive statistics # Visualize data df.plot(x="sale_date", y="sales") # Generate a line chart # export data df.to_csv("sales_data_processed.csv", index=False) # Export to CSV file
Conclusion
Pandas makes data processing a breeze, and its powerful features and flexible data structures make it a must-have tool for data scientists and analysts. By mastering the basics of Pandas, you can quickly and easily process and analyze complex data sets.
The above is the detailed content of Get started quickly with Python Pandas, and learn how to process data like a cook!. For more information, please follow other related articles on the PHP Chinese website!