search
HomeTechnology peripheralsAITime Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series Forecasting

Today I want to share a recent research work from the University of Connecticut that proposes a method to align time series data with large natural language processing (NLP) models on the latent space to improve The performance of time series forecasting. The key to this method is to use latent spatial hints (prompts) to enhance the accuracy of time series predictions.

Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series Forecasting

Paper title: S2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

Download address: https://www .php.cn/link/3695d85c350d924e662ea2cd3b760d40

1. Problem background

Large models are increasingly used in time series, mainly divided into two categories: the first category uses Various types of time series data train a large model of its own in the time series field; the second type directly uses a large text model trained in the NLP field and applies it to the time series. Because time series are different from images and texts, different data sets have different input formats and distributions, and there are problems such as distribution shift, making it difficult to train a unified model using all time series data. Therefore, more and more work has begun to try to directly use NLP large models to solve time series related problems.

This article also focuses on the second method of solving time series problems, which is to use NLP large models. Current practice often uses a description of the time series as a cue, but not all time series datasets contain this information. In addition, the patch-based time series data processing method cannot completely retain all the information of the time series data.

Based on the above problems, this article proposes a new modeling method, the core modeling idea, on the one hand, the time series is mapped into embedding after tokenize processing, on the other hand, the space of these time series Representations are aligned to word embeddings in the larger model. In this way, during the time series prediction process, the information related to the aligned word embedding can be found as a prompt to improve the prediction effect.

Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series ForecastingPicture

2. Implementation method

The following will introduce this from three aspects: data processing, latent space alignment, and model details. How to implement this work.

Data processing: Due to problems such as distribution shift of time series, this article performs a one-step trend term seasonal term decomposition on the input sequence. Each decomposed time series is standardized separately and then divided into overlapping patches. Each set of patches corresponds to the trend term patch, seasonal term patch, and residual patch. These three sets of patches are spliced ​​together and input into the MLP to obtain the basic embedding representation of each set of patches.

Implicit space alignment: This is the core step in this article. The design of prompts has a great impact on the performance of large models, and time series prompts are difficult to design. Therefore, this article proposes to align the patch representation of the time series with the word embedding of the large model in the latent space, and then retrieve the topK word embeddings as implicit prompts. The specific method is to use the patch embedding generated in the previous step to calculate the cosine similarity with the word embedding in the language model, select the topK word embeddings, and then use these word embeddings as prompts to splice them to the front of the time series patch embeddings. Since there are many word embeddings in large models, in order to reduce the amount of calculation, we first map the word embeddings to a small number of cluster centers.

Model details: In terms of model details, GPT2 is used as the language model part. Except for the parameters of the position embedding and layer normalization parts, the rest are frozen. In addition to MSE, the optimization goal also introduces the similarity between the patch embedding and the retrieved topK cluster embedding as a constraint, requiring that the distance between the two be as small as possible. The final prediction result is also

Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series ForecastingPicture

3. Experimental results

This article compares with some large time series models, iTransformer, The effect of SOTA models such as PatchTST has achieved relatively good improvement in the prediction of different time windows in most data sets.

Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series ForecastingPicture

At the same time, the article also visually analyzes embedding through t-SNE. As can be seen from the figure, the embedding of the time series is not aligned before alignment. There is no obvious clustering phenomenon, but the embedding generated through prompt has obvious clustering changes, which shows that the method proposed in this article effectively uses the spatial alignment of text and time series, and the corresponding prompt, to improve the quality of time series representation.

Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series Forecastingpicture

The above is the detailed content of Time Series Forecasting NLP Large Model New Work: Automatically Generate Implicit Prompts for Time Series Forecasting. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
From Friction To Flow: How AI Is Reshaping Legal WorkFrom Friction To Flow: How AI Is Reshaping Legal WorkMay 09, 2025 am 11:29 AM

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

This Is What AI Thinks Of You And Knows About YouThis Is What AI Thinks Of You And Knows About YouMay 09, 2025 am 11:24 AM

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

7 Steps To Building A Thriving, AI-Ready Corporate Culture7 Steps To Building A Thriving, AI-Ready Corporate CultureMay 09, 2025 am 11:23 AM

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Netflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionNetflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionMay 09, 2025 am 11:22 AM

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI ​​experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Take These Steps Today To Protect Yourself Against AI CybercrimeTake These Steps Today To Protect Yourself Against AI CybercrimeMay 09, 2025 am 11:19 AM

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber ​​criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

A Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionA Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionMay 09, 2025 am 11:13 AM

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

AI's Biggest Secret — Creators Don't Understand It, Experts SplitAI's Biggest Secret — Creators Don't Understand It, Experts SplitMay 09, 2025 am 11:09 AM

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

Bulbul-V2 by Sarvam AI: India's Best TTS ModelBulbul-V2 by Sarvam AI: India's Best TTS ModelMay 09, 2025 am 10:52 AM

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools