search
HomeBackend DevelopmentPython TutorialAn advanced guide to the Python logging module: designed for professionals

Python logging 模块的进阶指南:为专业人士设计的

python logging, loggingrecording, log level, log filter, log handler

Advanced Log Level

The standard Python logging module provides five predefined log levels: DEBUG, INFO, WARNING, ERROR and CRITICAL. However, for more granular logging needs, the log levels can be customized. This can be achieved by creating a custom logger and assigning it a level. For example:

import logging

# 创建一个自定义日志级别
CUSTOM_LEVEL = logging.DEBUG - 5

# 创建一个具有自定义级别的日志记录器
logger = logging.getLogger(__name__)
logger.setLevel(CUSTOM_LEVEL)

Log filter

Log filters allow you to filter log events based on specific criteria. Filters can be used to discard unnecessary log messages or log only events of interest. Filters can be attached to loggers or handlers. For example:

import logging

# 创建一个基于日志级别的过滤器
level_filter = logging.Filter(logging.WARNING)

# 创建一个日志记录器并添加过滤器
logger = logging.getLogger(__name__)
logger.addFilter(level_filter)

Log handler

The handler is responsible for processing and outputting log events. The Python logging module provides several built-in handlers, including:

  • StreamHandler: Output log messages to the console.
  • FileHandler: Write log messages to a file.
  • SMTPHandler: Send log messages via email.

Handlers can be customized to meet specific needs. For example, you can create your own handler to send log messages to a remote server or database.

Logging configuration

To make it easier to manage logging configuration, the Python logging module provides the logging.config module. It allows you to define logging settings using a configuration file or dictionary object. This is useful for maintaining consistent logging behavior across multiple modules or applications. For example:

import logging.config

# 加载日志记录配置
logging.config.fileConfig("logging.conf")

# 创建一个日志记录器
logger = logging.getLogger(__name__)

Extended logging function

In addition to the built-in functionality, there are many third-party libraries that extend the functionality of the Python logging module. These libraries provide various features such as:

  • Asynchronous logging
  • Log Record Aggregation
  • Customized log formatting

Best Practices

When using the Python logging module, follow these best practices:

  • Use meaningful names: Give loggers and handlers meaningful names to facilitate debugging.
  • Set the appropriate log level: Select the appropriate log level based on the needs of your application.
  • Add contextual information: Enrich log messages and include key information about application status and user requests.
  • Review logs regularly: Review logs regularly to identify and troubleshoot potential issues.
  • Use logging best practices: Follow industry-standard logging best practices to ensure consistency and readability.

Summarize

The Python logging module is a powerful tool for logging application events and information. By leveraging its advanced capabilities, developers can implement complex logging needs, providing deep insights and traceability of application behavior. Following best practices and leveraging third-party libraries can further enhance logging capabilities to meet the most demanding application requirements.

The above is the detailed content of An advanced guide to the Python logging module: designed for professionals. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.