Home >Backend Development >Python Tutorial >Python logging module guide: solving common knowledge points
python logging module LogRecord Exception handling Debugging
1. Logging level
The logging level specifies which events should be logged. From lowest level to highest, these levels include:
Use the logging.basicConfig()
function to set the logging level, for example:
import logging logging.basicConfig(level=logging.INFO)
2. Logging processor
The processor defines how logging messages should be processed. Some commonly used processors include:
import logging # 将日志记录消息打印到控制台 stdout_handler = logging.StreamHandler() stdout_handler.setLevel(logging.WARNING) # 将日志记录消息写入文件 file_handler = logging.FileHandler("log.txt") file_handler.setLevel(logging.DEBUG) # 将日志记录消息通过电子邮件发送 smtp_handler = logging.SMTPHandler("localhost", "info@example.com", "sender@example.com", "Subject: Log Alert") smtp_handler.setLevel(logging.ERROR) # 添加处理器到根记录器 logging.getLogger().addHandler(stdout_handler) logging.getLogger().addHandler(file_handler) logging.getLogger().addHandler(smtp_handler)
3. Log formatter
The formatter defines the format of the logging message. Custom formatters can be created using the logging.F<strong class="keylink">ORM</strong>atter
class, for example:
import logging # 创建一个自定义格式器 formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") # 设置格式器到处理器 for handler in logging.getLogger().handlers: handler.setFormatter(formatter)
4. Exception handling
The logging module can conveniently record exceptions:
import logging try: # 执行可能引发异常的代码 except Exception: # 记录异常 logging.exception("An error occurred")
5. Debugging
The logging module can also help with debugging:
logging.debug()
function to record debugging information, for example: import logging # 记录调试信息 logging.debug("Current value of x: %d", x)
logging.getLogger(name).setLevel(level)
Modify the level of a specific logger, for example: import logging # 将 "my_module" 记录器的日志记录级别设置为 DEBUG logging.getLogger("my_module").setLevel(logging.DEBUG)
6. Best Practices
Some best practices for using the logging module include:
in conclusion
Python The logging module is a powerful tool that can help developers log events, debug problems and track exceptions. By understanding its concepts and leveraging its capabilities, developers can significantly enhance the logging capabilities of their project.
The above is the detailed content of Python logging module guide: solving common knowledge points. For more information, please follow other related articles on the PHP Chinese website!