Home >Database >Mysql Tutorial >如何优化MySQL insert性能_MySQL

如何优化MySQL insert性能_MySQL

WBOY
WBOYOriginal
2016-06-01 13:39:211249browse

MySQL优化

  对于一些数据量较大的系统,面临的问题除了是查询效率低下,还有一个很重要的问题就是插入时间长。我们就有一个业务系统,每天的数据导入需要4-5个钟。这种费时的操作其实是很有风险的,假设程序出了问题,想重跑操作那是一件痛苦的事情。因此,提高大数据量系统的MySQL insert效率是很有必要的。

  经过对MySQL的测试,发现一些可以提高insert效率的方法,供大家参考参考。

  1. 一条SQL语句插入多条数据。

  常用的插入语句如:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);

  修改成:

INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);

  修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因有两个,一是减少SQL语句解析的操作, 只需要解析一次就能进行数据的插入操作,二是SQL语句较短,可以减少网络传输的IO。

 这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。

记录数 单条数据插入 多条数据插入
1百 0.149s 0.011s
1千 1.231s 0.047s
1万 11.678s 0.218s

  2. 在事务中进行插入处理。

  把插入修改成:

START TRANSACTION;
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);
...
COMMIT;

  使用事务可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内进行真正插入处理。通过使用事务可以减少数据库执行插入语句时多次“创建事务,提交事务”的消耗,所有插入都在执行后才进行提交操作。

  这里也提供了测试对比,分别是不使用事务与使用事务在记录数为1百、1千、1万的情况。

记录数 不使用事务 使用事务
1百 0.149s 0.033s
1千 1.231s 0.115s
1万 11.678s 1.050s

  性能测试:

  这里提供了同时使用上面两种方法进行INSERT效率优化的测试。即多条数据合并为同一个SQL,并且在事务中进行插入。

记录数 单条数据插入 合并数据+事务插入
1万 0m15.977s 0m0.309s
10万 1m52.204s 0m2.271s
100万 18m31.317s 0m23.332s

  从测试结果可以看到,insert的效率大概有50倍的提高,这个一个很客观的数字。

  注意事项:

  1. SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packe配置可以修改,默认是1M。

  2. 事务需要控制大小,事务太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会日志会使用磁盘数据,这时,效率会有所下降。所以比较好的做法是,在事务大小达到配置项数据级前进行事务提交。

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn