search
HomeOperation and MaintenanceLinux Operation and MaintenanceTechnology Sharing: Linux DTS Application and Practice Guide

Technology Sharing: Linux DTS Application and Practice Guide

Mar 01, 2024 pm 06:54 PM
linuxdtsapplicationkey value pair

技术分享:Linux DTS的应用及实践指南

Technical Sharing: Linux DTS Application and Practice Guide

With the widespread application of Linux in embedded systems, Device Tree (Device Tree) serves as a description Tools for hardware device information and resource allocation are becoming increasingly important. In the Linux kernel, Device Tree source files are usually called DTS (Device Tree Source) files. This article will delve into the application and practice guide of Linux DTS, and help readers better understand and use Device Tree through specific code examples.

1. What is Device Tree?

Device Tree is a data structure format used in the Linux kernel to describe hardware platform information. It separates the description information of hardware devices and resources from the kernel source code and exists in the form of a text file similar to a tree structure. When Linux starts, the Bootloader loads the Device Tree file into memory and passes it to the Linux kernel. The kernel initializes the device and allocates resources based on the contents of the Device Tree file at startup.

2. Composition of Device Tree

  1. Node: Device Tree organizes information about hardware devices in units of nodes. In Device Tree, each device corresponds to a node. . Each node describes the type, address, interrupt and other information of the device through keywords and attributes.
  2. Node properties (Property): Node properties can include specific information about the device, such as device address, interrupts, register addresses, etc. Attributes exist in the form of key-value pairs and describe various characteristics of the device through nodes.
  3. include directive: You can use the include directive in a Device Tree file to reference other Device Tree files to facilitate organization and reuse of device description information.

3. How to write a Device Tree file

Next we use a simple example to show how to write a simple Device Tree file to describe an LED device. Assuming the LED is connected to the GPIO1_1 pin, the physical address of GPIO1_1 is 0x44.

First, create a new Device Tree file led.dts with the following content:

/dts-v1/;

/ {
    compatible = "my_led";
    led {
        compatible = "gpio-led";
        status = "okay";

        gpios = <0x1 0x1 0>;
        label = "led_1";
    };
};

In this Device Tree file, we define an LED node, which includes some basic functions of LED. Information, such as the GPIO pin to which the LED is connected, the label of the LED, etc.

4. How to compile and use Device Tree files

In the source code directory of the Linux kernel, there is usually an arch/arm/boot/dts/ directory. We can put the written Device Copy the Tree file led.dts to this directory.

Next, execute the following command in the root directory of the Linux kernel source code to compile the Device Tree file:

make dtbs

After the compilation is completed, a led.dtb file will be generated. This file is the compiled Binary Device Tree file.

During the boot process, the Bootloader needs to load this led.dtb file and pass it to the kernel so that the kernel can initialize the LED device based on the hardware information described in the file.

5. Practice Guide

  1. Understand device tree specifications: When writing Device Tree files, you need to follow the device tree specifications and understand the meanings of various attributes and keywords of nodes in order to Make sure the description is accurate.
  2. Debugging and verification: After writing the Device Tree file, you can use the device tree interpreter (dtc) tool to verify whether the syntax of the file is correct. You can use this tool to view the contents of the Device Tree file through disassembly.
  3. Flexible configuration: Device Tree files can be flexibly configured and modified according to changes in specific hardware platforms to adapt to the needs of different hardware devices.

Through the above practical guide and specific code examples, I hope readers can better understand and use Linux DTS, flexibly configure and manage hardware devices, and improve the stability and maintainability of embedded systems.

The above is the detailed content of Technology Sharing: Linux DTS Application and Practice Guide. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Linux Operations: File System, Processes, and MoreLinux Operations: File System, Processes, and MoreMay 05, 2025 am 12:16 AM

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Linux Operations: Shell Scripting and AutomationLinux Operations: Shell Scripting and AutomationMay 04, 2025 am 12:15 AM

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux Operations: Understanding the Core FunctionalityLinux Operations: Understanding the Core FunctionalityMay 03, 2025 am 12:09 AM

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

Linux: Entering and Exiting Maintenance ModeLinux: Entering and Exiting Maintenance ModeMay 02, 2025 am 12:01 AM

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

Understanding Linux: The Core Components DefinedUnderstanding Linux: The Core Components DefinedMay 01, 2025 am 12:19 AM

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.

The Building Blocks of Linux: Key Components ExplainedThe Building Blocks of Linux: Key Components ExplainedApr 30, 2025 am 12:26 AM

The core components of the Linux system include the kernel, file system, and user space. 1. The kernel manages hardware resources and provides basic services. 2. The file system is responsible for data storage and organization. 3. Run user programs and services in the user space.

Using Maintenance Mode: Troubleshooting and Repairing LinuxUsing Maintenance Mode: Troubleshooting and Repairing LinuxApr 29, 2025 am 12:28 AM

Maintenance mode is a special operating level entered in Linux systems through single-user mode or rescue mode, and is used for system maintenance and repair. 1. Enter maintenance mode and use the command "sudosystemctlisolaterscue.target". 2. In maintenance mode, you can check and repair the file system and use the command "fsck/dev/sda1". 3. Advanced usage includes resetting the root user password, mounting the file system in read and write mode and editing the password file.

Linux Maintenance Mode: Understanding the PurposeLinux Maintenance Mode: Understanding the PurposeApr 28, 2025 am 12:01 AM

Maintenance mode is used for system maintenance and repair, allowing administrators to work in a simplified environment. 1. System Repair: Repair corrupt file system and boot loader. 2. Password reset: reset the root user password. 3. Package management: Install, update or delete software packages. By modifying the GRUB configuration or entering maintenance mode with specific keys, you can safely exit after performing maintenance tasks.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),