search
HomeDatabaseMysql TutorialMySQL不同存储引擎和不同分区字段对于查询的影响_MySQL

bitsCN.com

MySQL不同存储引擎和不同分区字段对于查询的影响

 

前提:每种表类型准备了200万条相同的数据。

表一 InnoDB & PARTITION BY RANGE (id) 

Sql代码      

CREATE TABLE `customer_innodb_id` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime DEFAULT NULL,  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`)  

) ENGINE=InnoDB DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (id)  

(PARTITION p0 VALUES LESS THAN (100000) ENGINE = InnoDB,  

 PARTITION p1 VALUES LESS THAN (500000) ENGINE = InnoDB,  

 PARTITION p2 VALUES LESS THAN (1000000) ENGINE = InnoDB,  

 PARTITION p3 VALUES LESS THAN (1500000) ENGINE = InnoDB,  

 PARTITION p4 VALUES LESS THAN (2000000) ENGINE = InnoDB,  

 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;  

 

查询结果:    

Sql代码  

mysql> select count(*) from customer_innodb_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (1.19 sec)  

  

mysql> select count(*) from customer_innodb_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.28 sec)  

  

mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (4.74 sec)  

  

mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (5.28 sec)  

 

表二 InnoDB & PARTITION BY RANGE (year) 

Sql代码  

CREATE TABLE `customer_innodb_year` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`,`regtime`)  

) ENGINE=InnoDB DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (YEAR(regtime ))  

(PARTITION p0 VALUES LESS THAN (1996) ENGINE = InnoDB,  

 PARTITION p1 VALUES LESS THAN (1997) ENGINE = InnoDB,  

 PARTITION p2 VALUES LESS THAN (1998) ENGINE = InnoDB,  

 PARTITION p3 VALUES LESS THAN (1999) ENGINE = InnoDB,  

 PARTITION p4 VALUES LESS THAN (2000) ENGINE = InnoDB,  

 PARTITION p5 VALUES LESS THAN (2001) ENGINE = InnoDB,  

 PARTITION p6 VALUES LESS THAN (2002) ENGINE = InnoDB,  

 PARTITION p7 VALUES LESS THAN (2003) ENGINE = InnoDB,  

 PARTITION p8 VALUES LESS THAN (2004) ENGINE = InnoDB,  

 PARTITION p9 VALUES LESS THAN (2005) ENGINE = InnoDB,  

 PARTITION p10 VALUES LESS THAN (2006) ENGINE = InnoDB,  

 PARTITION p11 VALUES LESS THAN (2007) ENGINE = InnoDB,  

 PARTITION p12 VALUES LESS THAN (2008) ENGINE = InnoDB,  

 PARTITION p13 VALUES LESS THAN (2009) ENGINE = InnoDB,  

 PARTITION p14 VALUES LESS THAN (2010) ENGINE = InnoDB,  

 PARTITION p15 VALUES LESS THAN (2011) ENGINE = InnoDB,  

 PARTITION p16 VALUES LESS THAN (2012) ENGINE = InnoDB,  

 PARTITION p17 VALUES LESS THAN (2013) ENGINE = InnoDB,  

 PARTITION p18 VALUES LESS THAN (2014) ENGINE = InnoDB,  

 PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_innodb_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (5.31 sec)  

  

mysql> select count(*) from customer_innodb_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.31 sec)  

  

mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.47 sec)  

  

mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.19 sec)  

 

表三 MyISAM & PARTITION BY RANGE (id) 

Sql代码  

CREATE TABLE `customer_myisam_id` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime DEFAULT NULL,  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`)  

) ENGINE=MyISAM DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (id)  

(PARTITION p0 VALUES LESS THAN (100000) ENGINE = MyISAM,  

 PARTITION p1 VALUES LESS THAN (500000) ENGINE = MyISAM,  

 PARTITION p2 VALUES LESS THAN (1000000) ENGINE = MyISAM,  

 PARTITION p3 VALUES LESS THAN (1500000) ENGINE = MyISAM,  

 PARTITION p4 VALUES LESS THAN (2000000) ENGINE = MyISAM,  

 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_myisam_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.59 sec)  

  

mysql> select count(*) from customer_myisam_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.16 sec)  

  

mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (34.17 sec)  

  

mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (34.06 sec)  

 

表四 MyISAM & PARTITION BY RANGE (year) 

Sql代码  

CREATE TABLE `customer_myisam_year` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`,`regtime`)  

) ENGINE=MyISAM DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (YEAR(regtime ))  

(PARTITION p0 VALUES LESS THAN (1996) ENGINE = MyISAM,  

 PARTITION p1 VALUES LESS THAN (1997) ENGINE = MyISAM,  

 PARTITION p2 VALUES LESS THAN (1998) ENGINE = MyISAM,  

 PARTITION p3 VALUES LESS THAN (1999) ENGINE = MyISAM,  

 PARTITION p4 VALUES LESS THAN (2000) ENGINE = MyISAM,  

 PARTITION p5 VALUES LESS THAN (2001) ENGINE = MyISAM,  

 PARTITION p6 VALUES LESS THAN (2002) ENGINE = MyISAM,  

 PARTITION p7 VALUES LESS THAN (2003) ENGINE = MyISAM,  

 PARTITION p8 VALUES LESS THAN (2004) ENGINE = MyISAM,  

 PARTITION p9 VALUES LESS THAN (2005) ENGINE = MyISAM,  

 PARTITION p10 VALUES LESS THAN (2006) ENGINE = MyISAM,  

 PARTITION p11 VALUES LESS THAN (2007) ENGINE = MyISAM,  

 PARTITION p12 VALUES LESS THAN (2008) ENGINE = MyISAM,  

 PARTITION p13 VALUES LESS THAN (2009) ENGINE = MyISAM,  

 PARTITION p14 VALUES LESS THAN (2010) ENGINE = MyISAM,  

 PARTITION p15 VALUES LESS THAN (2011) ENGINE = MyISAM,  

 PARTITION p16 VALUES LESS THAN (2012) ENGINE = MyISAM,  

 PARTITION p17 VALUES LESS THAN (2013) ENGINE = MyISAM,  

 PARTITION p18 VALUES LESS THAN (2014) ENGINE = MyISAM,  

 PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_myisam_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (2.08 sec)  

  

mysql> select count(*) from customer_myisam_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.17 sec)  

  

mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.56 sec)  

  

mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.13 sec)  

 

 结果汇总    

序号 存储引擎 分区函数 查询条件 一次查询(sec) 二次查询(sec)

1 InnoDB id id 1.19 0.28

2 InnoDB id regtime 4.74 5.28

3 InnoDB year id 5.31 0.31

4 InnoDB year regtime 0.47 0.19

5 MyISAM id id 0.59 0.16

6 MyISAM id regtime 34.17 34.06

7 MyISAM year id 2.08 0.17

8 MyISAM year regtime 0.56 0.13

 总结

1、对于按照时间区间来查询的,建议采用按照时间来分区,减少查询范围。

2、MyISAM性能总体占优,但是不支持事务处理、外键约束等。

 

bitsCN.com
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL BLOB : are there any limits?MySQL BLOB : are there any limits?May 08, 2025 am 12:22 AM

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

MySQL : What are the best tools to automate users creation?MySQL : What are the best tools to automate users creation?May 08, 2025 am 12:22 AM

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

MySQL: Can I search inside a blob?MySQL: Can I search inside a blob?May 08, 2025 am 12:20 AM

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc

MySQL String Data Types: A Comprehensive GuideMySQL String Data Types: A Comprehensive GuideMay 08, 2025 am 12:14 AM

MySQLoffersvariousstringdatatypes:1)CHARforfixed-lengthstrings,idealforconsistentlengthdatalikecountrycodes;2)VARCHARforvariable-lengthstrings,suitableforfieldslikenames;3)TEXTtypesforlargertext,goodforblogpostsbutcanimpactperformance;4)BINARYandVARB

Mastering MySQL BLOBs: A Step-by-Step TutorialMastering MySQL BLOBs: A Step-by-Step TutorialMay 08, 2025 am 12:01 AM

TomasterMySQLBLOBs,followthesesteps:1)ChoosetheappropriateBLOBtype(TINYBLOB,BLOB,MEDIUMBLOB,LONGBLOB)basedondatasize.2)InsertdatausingLOAD_FILEforefficiency.3)Storefilereferencesinsteadoffilestoimproveperformance.4)UseDUMPFILEtoretrieveandsaveBLOBsco

BLOB Data Type in MySQL: A Detailed Overview for DevelopersBLOB Data Type in MySQL: A Detailed Overview for DevelopersMay 07, 2025 pm 05:41 PM

BlobdatatypesinmysqlareusedforvoringLargebinarydatalikeImagesoraudio.1) Useblobtypes (tinyblobtolongblob) Basedondatasizeneeds. 2) Storeblobsin Perplate Petooptimize Performance.3) ConsidersxterNal Storage Forel Blob Romana DatabasesizerIndimprovebackupupe

How to Add Users to MySQL from the Command LineHow to Add Users to MySQL from the Command LineMay 07, 2025 pm 05:01 PM

ToadduserstoMySQLfromthecommandline,loginasroot,thenuseCREATEUSER'username'@'host'IDENTIFIEDBY'password';tocreateanewuser.GrantpermissionswithGRANTALLPRIVILEGESONdatabase.*TO'username'@'host';anduseFLUSHPRIVILEGES;toapplychanges.Alwaysusestrongpasswo

What Are the Different String Data Types in MySQL? A Detailed OverviewWhat Are the Different String Data Types in MySQL? A Detailed OverviewMay 07, 2025 pm 03:33 PM

MySQLofferseightstringdatatypes:CHAR,VARCHAR,BINARY,VARBINARY,BLOB,TEXT,ENUM,andSET.1)CHARisfixed-length,idealforconsistentdatalikecountrycodes.2)VARCHARisvariable-length,efficientforvaryingdatalikenames.3)BINARYandVARBINARYstorebinarydata,similartoC

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool