search
HomeBackend DevelopmentPython TutorialNumpy Tutorial: Learn Array Creation from Scratch
Numpy Tutorial: Learn Array Creation from ScratchFeb 20, 2024 am 09:32 AM
arraynumpycreate

Numpy Tutorial: Learn Array Creation from Scratch

Numpy Tutorial: Learn to create arrays from scratch, specific code examples are required

Overview:
Numpy is an open source mathematics library for Python that provides a large number of Mathematical functions and data structures, especially arrays (Arrays). Arrays are a very common and important data structure in machine learning and data analysis, so learning how to create and manipulate arrays is critical. This tutorial aims to introduce the creation of arrays in Numpy from scratch to help readers get started quickly.

  1. Import Numpy library
    Before we begin, we first need to import the Numpy library. Usually, we use the import statement to import the Numpy library into our Python code.
import numpy as np
  1. Create a one-dimensional array
    In Numpy, a one-dimensional array is a list containing elements of the same data type. We can use the ndarray function provided by Numpy to create a one-dimensional array.
array_1d = np.array([1, 2, 3, 4, 5])
print(array_1d)

Output: [1 2 3 4 5]

  1. Create a two-dimensional array
    A two-dimensional array is a table structure containing multiple rows and columns. We can create a two-dimensional array using a variety of methods, the most common of which is from a list of lists.
array_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(array_2d)

Output:

[[1 2 3]
 [4 5 6]
 [7 8 9]]
  1. Create an array of a specific type
    In some cases, we need to create an array of a specific type, such as an array of all 0s, An array of all ones or an empty array. Numpy provides some functions to create these special types of arrays.
  • Create an array of all 0s

    zeros_array = np.zeros((3, 4))
    print(zeros_array)

    Output:

    [[0. 0. 0. 0.]
     [0. 0. 0. 0.]
     [0. 0. 0. 0.]]
  • Create an array of all 1s

    ones_array = np.ones((2, 3))
    print(ones_array)

    Output:

    [[1. 1. 1.]
     [1. 1. 1.]]
  • Create empty array

    empty_array = np.empty((2, 2))
    print(empty_array)

    Output:

    [[4.94e-323 9.88e-323]
     [1.48e-322 1.97e-322]]
    ##Create sequence array
  1. In some cases, we want to create a sequence array, that is, an evenly spaced array. Numpy provides the
    arange function and the linspace function to create such an array.
  • Use the

    arange function to create a sequence array

    sequence_array = np.arange(0, 10, 2)
    print(sequence_array)

    Output: [0 2 4 6 8]

  • Use the

    linspace function to create a sequence array

    sequence_array = np.linspace(0, 1, 5)
    print(sequence_array)

    Output: [0. 0.25 0.5 0.75 1. ]

    Creation of random array
  1. In addition to the above methods, we can also use the random function provided by Numpy to create a random array. Commonly used random functions include
    random, rand, randn and randint, etc.
  • Create a random array

    random_array = np.random.random((2, 3))
    print(random_array)

    Output:

    [[0.59525333 0.78593695 0.30467253]
     [0.83647996 0.09302248 0.85711096]]

  • Create a random array that obeys the normal distribution

    normal_array = np.random.randn(3, 3)
    print(normal_array)

    Output:

    [[-0.96338454 -0.44881001  0.01016194]
     [-0.78893991 -0.32811758  0.11091332]
     [ 0.87585342  0.49660924 -0.52104011]]

  • Create an array of random integers

    random_int_array = np.random.randint(1, 10, (2, 4))
    print(random_int_array)

    Output:

    [[3 9 3 3]
     [1 9 7 5]]

Introduction to this article It explains the creation of arrays in the Numpy library, including the creation of one-dimensional arrays and two-dimensional arrays, as well as the creation methods of specific types of arrays, sequence arrays and random arrays, and provides specific code examples. I hope this tutorial can help readers understand and master the creation of arrays in Numpy.

The above is the detailed content of Numpy Tutorial: Learn Array Creation from Scratch. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
怎么更新numpy版本怎么更新numpy版本Nov 28, 2023 pm 05:50 PM

更新numpy版本方法:1、使用“pip install --upgrade numpy”命令;2、使用的是Python 3.x版本,使用“pip3 install --upgrade numpy”命令,将会下载并安装,覆盖当前的NumPy版本;3、若使用的是conda来管理Python环境,使用“conda install --update numpy”命令更新即可。

numpy版本推荐使用哪个版本numpy版本推荐使用哪个版本Nov 22, 2023 pm 04:58 PM

推荐使用最新版本的NumPy1.21.2。原因是:目前,NumPy的最新稳定版本是1.21.2。通常情况下,推荐使用最新版本的NumPy,因为它包含了最新的功能和性能优化,并且修复了之前版本中的一些问题和错误。

python numpy中linspace函数怎么使用python numpy中linspace函数怎么使用May 01, 2023 am 09:34 AM

pythonnumpy中linspace函数numpy提供linspace函数(有时也称为np.linspace)是python中创建数值序列工具。与Numpyarange函数类似,生成结构与Numpy数组类似的均匀分布的数值序列。两者虽有些差异,但大多数人更愿意使用linspace函数,其很好理解,但我们需要去学习如何使用。本文我们学习linspace函数及其他语法,并通过示例解释具体参数。最后也顺便提及np.linspace和np.arange之间的差异。1.快速了解通过定义均匀间隔创建数值

如何查看numpy版本如何查看numpy版本Nov 21, 2023 pm 04:12 PM

查看numpy版本的方法:1、使用命令行查看版本,这将打印出当前版本;2、使用Python脚本查看版本,将在控制台输出当前版本;3、使用Jupyter Notebook查看版本,将在输出单元格中显示当前版本;4、使用Anaconda Navigator查看版本,在已安装的软件包列表中,可以找到其版本;5、在Python交互式环境中查看版本,将直接输出当前安装的版本。

numpy增加维度怎么弄numpy增加维度怎么弄Nov 22, 2023 am 11:48 AM

numpy增加维度的方法:1、使用“np.newaxis”增加维度,“np.newaxis”是一个特殊的索引值,用于在指定位置插入一个新的维度,可以通过在对应的位置使用np.newaxis来增加维度;2、使用“np.expand_dims()”增加维度,“np.expand_dims()”函数可以在指定的位置插入一个新的维度,用于增加数组的维度

numpy怎么安装numpy怎么安装Dec 01, 2023 pm 02:16 PM

numpy可以通过使用pip、conda、源码和Anaconda来安装。详细介绍:1、pip,在命令行中输入pip install numpy即可;2、conda,在命令行中输入conda install numpy即可;3、源码,解压源码包或进入源码目录,在命令行中输入python setup.py build python setup.py install即可。

如何使用Python中的numpy计算矩阵或ndArray的行列式?如何使用Python中的numpy计算矩阵或ndArray的行列式?Aug 18, 2023 pm 11:57 PM

在本文中,我们将学习如何使用Python中的numpy库计算矩阵的行列式。矩阵的行列式是一个可以以紧凑形式表示矩阵的标量值。它是线性代数中一个有用的量,并且在物理学、工程学和计算机科学等各个领域都有多种应用。在本文中,我们首先将讨论行列式的定义和性质。然后我们将学习如何使用numpy计算矩阵的行列式,并通过一些实例来看它在实践中的应用。行列式的定义和性质Thedeterminantofamatrixisascalarvaluethatcanbeusedtodescribethepropertie

使用NumPy在Python中计算给定两个向量的外积使用NumPy在Python中计算给定两个向量的外积Sep 01, 2023 pm 03:41 PM

两个向量的外积是向量A的每个元素与向量B的每个元素相乘得到的矩阵。向量a和b的外积为a⊗b。以下是计算外积的数学公式。a⊗b=[a[0]*b,a[1]*b,...,a[m-1]*b]哪里,a,b是向量。表示两个向量的逐元素乘法。外积的输出是一个矩阵,其中i和j是矩阵的元素,其中第i行是通过将向量‘a’的第i个元素乘以向量‘b’的第i个元素得到的向量。使用Numpy计算外积在Numpy中,我们有一个名为outer()的函数,用于计算两个向量的外积。语法下面是outer()函数的语法-np.oute

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.