search
HomeJavajavaTutorialJava thread synchronization and mutual exclusion: let your program dance in the concurrent world

Java thread synchronization and mutual exclusion: let your program dance in the concurrent world

Feb 19, 2024 pm 07:33 PM
javaAtomic operationsvolatileConcurrent programmingLockmutually exclusiveThread synchronizationconcurrent accessSynchronization mechanism

Java thread synchronization and mutual exclusion: let your program dance in the concurrent world

php editor Zimo will provide you with a detailed analysis of Java thread synchronization and mutual exclusion to help you navigate the concurrent world with ease. In today's era of information explosion, multi-thread programming has become an essential skill. Understanding how to achieve thread synchronization and mutual exclusion is crucial to improving program performance. Through this article, you will learn how to use the keywords synchronized, Lock interface, and volatile keywords in Java to achieve thread synchronization and mutual exclusion, making your program more stable and efficient in a concurrent environment.

Java provides rich thread synchronization and mutual exclusion mechanisms to help developers solve the challenges in concurrent programming. These mechanisms mainly include locks, atomic operations and volatile keywords. Locks are used to protect shared resources. They allow one thread to monopolize the resource when accessing it, preventing other threads from accessing it at the same time, thereby avoiding data inconsistency and program crashes. An atomic operation refers to an uninterruptible operation, which ensures that while a thread performs an atomic operation, other threads cannot access the shared variables involved in the operation. The volatile keyword can modify a variable to make it visible between multiple threads and prohibit the compiler from optimizing the variable.

In order to better understand the Java thread synchronization and mutual exclusion mechanism, let us demonstrate the usage of these mechanisms through code examples. First, we create a shared resource class that contains a variable count for counting:

public class SharedResource {
private int count = 0;

public synchronized void increment() {
count++;
}

public synchronized int getCount() {
return count;
}
}

In the SharedResource class, we use the synchronized keyword to modify the increment() method and getCount() method, which means that these two methods are synchronized methods. When one thread executes the synchronized method, other threads will be blocked. , until the first thread completes execution. This ensures that the count variable is safe across multiple threads.

Next, we create a thread class to simulate concurrent access to shared resources:

public class MyThread extends Thread {
private SharedResource sharedResource;

public MyThread(SharedResource sharedResource) {
this.sharedResource = sharedResource;
}

@Override
public void run() {
for (int i = 0; i < 10000; i++) {
sharedResource.increment();
}
}
}

In the MyThread class, we use the SharedResource object as a parameter, and increase the count variable concurrently by calling the increment() method in the run() method.

Finally, we create a main class to create multiple threads and start them:

public class Main {
public static void main(String[] args) {
SharedResource sharedResource = new SharedResource();

MyThread[] threads = new MyThread[10];
for (int i = 0; i < 10; i++) {
threads[i] = new MyThread(sharedResource);
threads[i].start();
}

for (MyThread thread : threads) {
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

System.out.println("Final count: " + sharedResource.getCount());
}
}

In the main class, we created a SharedResource object and created 10 MyThread objects, each using the same SharedResource object. Then, we start these 10 threads and wait for them all to finish executing. Finally, we output the value of the count variable and verify that its final value is 100000, which shows that the thread synchronization mechanism effectively guarantees the correctness of the count variable.

Through the above example, we demonstrate how to use Java thread synchronization and mutual exclusion mechanisms to protect shared resources. In actual development, developers need to choose an appropriate synchronization mechanism based on specific needs to ensure the correctness and reliability of concurrent programs.

The above is the detailed content of Java thread synchronization and mutual exclusion: let your program dance in the concurrent world. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
How do I use Maven or Gradle for advanced Java project management, build automation, and dependency resolution?How do I use Maven or Gradle for advanced Java project management, build automation, and dependency resolution?Mar 17, 2025 pm 05:46 PM

The article discusses using Maven and Gradle for Java project management, build automation, and dependency resolution, comparing their approaches and optimization strategies.

How do I create and use custom Java libraries (JAR files) with proper versioning and dependency management?How do I create and use custom Java libraries (JAR files) with proper versioning and dependency management?Mar 17, 2025 pm 05:45 PM

The article discusses creating and using custom Java libraries (JAR files) with proper versioning and dependency management, using tools like Maven and Gradle.

How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?Mar 17, 2025 pm 05:44 PM

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

How can I use JPA (Java Persistence API) for object-relational mapping with advanced features like caching and lazy loading?How can I use JPA (Java Persistence API) for object-relational mapping with advanced features like caching and lazy loading?Mar 17, 2025 pm 05:43 PM

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

How does Java's classloading mechanism work, including different classloaders and their delegation models?How does Java's classloading mechanism work, including different classloaders and their delegation models?Mar 17, 2025 pm 05:35 PM

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools