


Demystifying the Java Memory Model: Mastering the Secrets Behind Multi-Threaded Programming
php Xiaobian Yuzai takes you to reveal the Java memory model and gain an in-depth understanding of the mysteries behind multi-threaded programming. Multi-threaded programming is an important skill in Java development, and understanding the memory model is crucial to writing efficient and reliable multi-threaded programs. Let's explore the Java memory model together and uncover the mystery of multi-threaded programming!
The main goal of JMM is to ensure the correctness and predictability of multi-threaded programs. It prevents data races and memory consistency issues by defining a set of rules to regulate thread access to shared memory. The basic principles of JMM include:
- Visibility: Modifications of shared variables by threads must be reflected in the visible range of other threads in a timely manner.
- Atomicity: Read and write operations on shared variables are atomic, that is, uninterruptible.
- Ordering: The order of thread access to shared variables must be consistent with the order of execution in the program.
In order to realize these basic principles, JMM introduces the following key concepts:
- Main memory (main memory): Main memory is the physical memory space shared by all threads.
- Working memory: Each thread has its own working memory, which stores a copy of the thread's private variables.
- cache coherence protocol: Cache The coherence protocol is a protocol used to ensure that data in the caches of multiple processors remains consistent.
When a thread modifies a shared variable, it writes the modified value to main memory. Other threads can get the latest value by reading the value in main memory. However, other threads may not see the modified value immediately due to the latency of the cache coherence protocol. To solve this problem, JMM introduces the concept of memory barrier. A memory barrier forces a thread to immediately write modified values to main memory and ensures that other threads can see the modified values.
The Java language provides two keywords, synchronized
and volatile
, to achieve thread synchronization and visibility. The synchronized
keyword can ensure that access to shared variables is atomic, and the volatile
keyword can ensure that modifications to shared variables are visible.
Here is some demo code showing how to use the synchronized
and volatile
keywords to achieve thread synchronization and visibility:
class SharedCounter { private int count = 0; public synchronized void increment() { count++; } public int getCount() { return count; } } public class Main { public static void main(String[] args) { SharedCounter counter = new SharedCounter(); Thread thread1 = new Thread(() -> { for (int i = 0; i < 10000; i++) { counter.increment(); } }); Thread thread2 = new Thread(() -> { for (int i = 0; i < 10000; i++) { counter.increment(); } }); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Final count: " + counter.getCount()); } }
In this example, we use the synchronized
keyword to ensure that access to the count
variable is atomic, thus avoiding data race issues.
class SharedCounter { private volatile int count = 0; public void increment() { count++; } public int getCount() { return count; } } public class Main { public static void main(String[] args) { SharedCounter counter = new SharedCounter(); Thread thread1 = new Thread(() -> { for (int i = 0; i < 10000; i++) { counter.increment(); } }); Thread thread2 = new Thread(() -> { for (int i = 0; i < 10000; i++) { System.out.println("Current count: " + counter.getCount()); } }); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } } }
In this example, we use the volatile
keyword to ensure that modifications to the count
variable are visible, so that Thread 2 can see Thread 1's changes to ## in a timely manner #count Modification of variables.
problems in concurrent programming . By mastering the basic principles and key concepts of JMM, programmers can write more robust and predictable multi-threaded programs.
The above is the detailed content of Demystifying the Java Memory Model: Mastering the Secrets Behind Multi-Threaded Programming. For more information, please follow other related articles on the PHP Chinese website!

The article discusses using Maven and Gradle for Java project management, build automation, and dependency resolution, comparing their approaches and optimization strategies.

The article discusses creating and using custom Java libraries (JAR files) with proper versioning and dependency management, using tools like Maven and Gradle.

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment