


In-depth study of JVM garbage collection algorithms: detailed description of common algorithms
In-depth understanding of JVM garbage collection algorithm: several common discussions, requiring specific code examples
Overview:
JVM (Java Virtual Machine) is a Java program running A virtual machine responsible for interpreting and executing Java bytecode files. The JVM garbage collection algorithm is an important part of managing memory. It is responsible for automatically reclaiming memory space that is no longer used to improve program performance and resource utilization. In this article, we will take an in-depth look at several common JVM garbage collection algorithms and provide specific code examples.
1. Mark and Sweep Algorithm (Mark and Sweep)
The mark-sweep algorithm is one of the earliest and most basic garbage collection algorithms. Its implementation idea is to start from the root node (usually a global variable or a reference in a stack frame), recursively traverse the entire object graph, mark all active objects, and then clear unmarked objects. The following is a code example of the mark-clear algorithm:
class GCObject { private boolean marked = false; // ... } class GarbageCollector { public static void mark(GCObject object) { if (object.isMarked()) { return; } object.setMarked(true); // 标记相邻引用的对象 } public static void sweep(List<GCObject> objects) { for (GCObject object : objects) { if (!object.isMarked()) { objects.remove(object); } else { object.setMarked(false); } } } public static void main(String[] args) { // 创建对象并设置引用 GCObject object1 = new GCObject(); GCObject object2 = new GCObject(); object1.setReference(object2); // 执行垃圾回收 List<GCObject> objects = new ArrayList<>(); objects.add(object1); objects.add(object2); mark(object1); mark(object2); sweep(objects); } }
The advantage of the mark-clear algorithm is that it can accurately recycle memory that is no longer used, but it has two main disadvantages: First, a large amount of memory will be left after recycling Discontinuous memory fragmentation leads to low memory utilization; second, the marking and clearing process requires a large amount of computing resources.
2. Copying algorithm (Copying)
The copying algorithm is a garbage collection algorithm proposed to solve the memory fragmentation problem caused by the mark-clear algorithm. The copy algorithm divides the memory space into two areas: From area and To area. When the From area is full, copy the active objects to the To area and clear all unreplicated objects in the From area. The following is a code example of the copy algorithm:
class GCObject { // ... } class GarbageCollector { public static void copy(List<GCObject> objects, int sizeFrom, int sizeTo) { List<GCObject> newObjects = new ArrayList<>(); for (GCObject object : objects) { GCObject newObject = object.copyTo(sizeTo); newObjects.add(newObject); } objects.clear(); objects.addAll(newObjects); } public static void main(String[] args) { // 创建对象并设置引用 GCObject object1 = new GCObject(); GCObject object2 = new GCObject(); object1.setReference(object2); // 执行垃圾回收 List<GCObject> objects = new ArrayList<>(); objects.add(object1); objects.add(object2); copy(objects, objects.size(), objects.size() * 2); } }
The advantage of the copy algorithm is that it eliminates memory fragmentation and improves memory utilization, but its disadvantage is that it requires a continuous area of the same size as the memory space for copying Object, thus wasting half of the memory space.
3. Mark-Compact Algorithm (Mark and Compact)
The Mark-Compact algorithm is an improved version of the Mark-Clear algorithm, and its main goal is to eliminate memory fragmentation. The mark-compact algorithm first marks active objects and moves them to one end, and then clears the remaining unmarked memory space. The following is a code example of the mark-compact algorithm:
class GCObject { private boolean marked = false; // ... } class GarbageCollector { public static void mark(GCObject object) { if (object.isMarked()) { return; } object.setMarked(true); // 标记相邻引用的对象 } public static void compact(List<GCObject> objects) { int index = 0; for (GCObject object : objects) { if (object.isMarked()) { swap(objects, index++); } } for (int i = objects.size() - 1; i >= index; i--) { objects.remove(i); } } public static void swap(List<GCObject> objects, int index) { // 交换对象位置 } public static void main(String[] args) { // 创建对象并设置引用 GCObject object1 = new GCObject(); GCObject object2 = new GCObject(); object1.setReference(object2); // 执行垃圾回收 List<GCObject> objects = new ArrayList<>(); objects.add(object1); objects.add(object2); mark(object1); mark(object2); compact(objects); } }
The advantage of the mark-compact algorithm is that it eliminates memory fragmentation, but its disadvantage is that it requires additional processing steps to move live objects, thereby increasing the complexity of the algorithm sex and overhead.
Summary:
This article provides an in-depth understanding of several common JVM garbage collection algorithms and provides specific code examples. Each algorithm has its advantages and disadvantages, and the appropriate garbage collection algorithm should be selected according to the specific application scenario. I hope that readers can have a deeper understanding of the JVM garbage collection algorithm through the introduction of this article, and can apply it in actual development.
The above is the detailed content of In-depth study of JVM garbage collection algorithms: detailed description of common algorithms. For more information, please follow other related articles on the PHP Chinese website!

Bytecodeachievesplatformindependencebybeingexecutedbyavirtualmachine(VM),allowingcodetorunonanyplatformwiththeappropriateVM.Forexample,JavabytecodecanrunonanydevicewithaJVM,enabling"writeonce,runanywhere"functionality.Whilebytecodeoffersenh

Java cannot achieve 100% platform independence, but its platform independence is implemented through JVM and bytecode to ensure that the code runs on different platforms. Specific implementations include: 1. Compilation into bytecode; 2. Interpretation and execution of JVM; 3. Consistency of the standard library. However, JVM implementation differences, operating system and hardware differences, and compatibility of third-party libraries may affect its platform independence.

Java realizes platform independence through "write once, run everywhere" and improves code maintainability: 1. High code reuse and reduces duplicate development; 2. Low maintenance cost, only one modification is required; 3. High team collaboration efficiency is high, convenient for knowledge sharing.

The main challenges facing creating a JVM on a new platform include hardware compatibility, operating system compatibility, and performance optimization. 1. Hardware compatibility: It is necessary to ensure that the JVM can correctly use the processor instruction set of the new platform, such as RISC-V. 2. Operating system compatibility: The JVM needs to correctly call the system API of the new platform, such as Linux. 3. Performance optimization: Performance testing and tuning are required, and the garbage collection strategy is adjusted to adapt to the memory characteristics of the new platform.

JavaFXeffectivelyaddressesplatforminconsistenciesinGUIdevelopmentbyusingaplatform-agnosticscenegraphandCSSstyling.1)Itabstractsplatformspecificsthroughascenegraph,ensuringconsistentrenderingacrossWindows,macOS,andLinux.2)CSSstylingallowsforfine-tunin

JVM works by converting Java code into machine code and managing resources. 1) Class loading: Load the .class file into memory. 2) Runtime data area: manage memory area. 3) Execution engine: interpret or compile execution bytecode. 4) Local method interface: interact with the operating system through JNI.

JVM enables Java to run across platforms. 1) JVM loads, validates and executes bytecode. 2) JVM's work includes class loading, bytecode verification, interpretation execution and memory management. 3) JVM supports advanced features such as dynamic class loading and reflection.

Java applications can run on different operating systems through the following steps: 1) Use File or Paths class to process file paths; 2) Set and obtain environment variables through System.getenv(); 3) Use Maven or Gradle to manage dependencies and test. Java's cross-platform capabilities rely on the JVM's abstraction layer, but still require manual handling of certain operating system-specific features.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor
