Home >Backend Development >Python Tutorial >Plot color plots in Matplotlib
I really like the additional colormaps in plotly, such as "Dense" or "Ice". Nonetheless, I currently use matplotlib for most of my plotting.
Is there a way to use pyplot colormaps with matplotlib figures?
When I take the colormap "ice" as an example, the only results I get are rgb colors as strings
import plotly.express as px px.colors.sequential.ice
This just returns
['rgb(3, 5, 18)', 'rgb(25, 25, 51)', 'rgb(44, 42, 87)', 'rgb(58, 60, 125)', 'rgb(62, 83, 160)', 'rgb(62, 109, 178)', 'rgb(72, 134, 187)', 'rgb(89, 159, 196)', 'rgb(114, 184, 205)', 'rgb(149, 207, 216)', 'rgb(192, 229, 232)', 'rgb(234, 252, 253)']
The problem is, I don't know how to use it in matplotlib plots. What I tried was creating a custom colormap
my_cmap = matplotlib.colors.listedcolormap(px.colors.sequential.ice, name='my_colormap_name')
But this gives me the following error when used in a plot:
ValueError: Invalid RGBA argument: 'rgb(3, 5, 18)'
Does anyone know how to convert it correctly?
You must decode the rgb string:
import plotly.express as px import matplotlib.pyplot as plt import matplotlib.colors as mcolors samples = 20 ice = px.colors.sample_colorscale(px.colors.sequential.ice, samples) rgb = [px.colors.unconvert_from_rgb_255(px.colors.unlabel_rgb(c)) for c in ice] cmap = mcolors.listedcolormap(rgb, name='ice', n=samples)
Demo:
import numpy as np gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) plt.imshow(gradient, aspect='auto', cmap=cmap) plt.show()
Output:
The above is the detailed content of Plot color plots in Matplotlib. For more information, please follow other related articles on the PHP Chinese website!