Home >Backend Development >Python Tutorial >How to plot density array using matplotlib.pyplot.contourf
I have a xarray dataset called dens and I want to plot it.
This is the data set:
<xarray.dataset> dimensions: (time: 641, lat: 30, lon: 30) coordinates: * time (time) datetime64[ns] 2013-07-01t12:00:00 ... 2013-08-02t12:00:00 * lon (lon) float64 32.73 32.83 32.94 33.05 ... 35.53 35.64 35.75 35.85 * lat (lat) float64 31.08 31.27 31.47 31.66 ... 36.06 36.25 36.44 36.63 data variables: density (time, lat, lon) float64 2e+03 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
I am using the command
plt.contourf(dens.density.values[-1,:,:]);
plotted it and it was working, but since I wanted the coastline to be plotted on the plot as well, I also tried using
m = basemap(llcrnrlon=data['lon'].min(), llcrnrlat=data['lat'].min(), urcrnrlon=data['lon'].max(), urcrnrlat=data['lat'].max(), resolution='i', suppress_ticks=1) m.drawcoastlines(); m.fillcontinents(color='gray',lake_color='gray');
But when I run all the commands and then run plt.show()
the contour plot disappears and all it shows me is the coastline.
How to solve this problem to get a contour map in the same coastline map?
Sorry if this is a stupid question but I'm pretty new to python
thanks for your help,
Yutam
Edit: I just realized now that I was trying to combine two different "toolkits" and it is possible to do all of this using just the basemap toolkit, but just trying to write
m.contourf(dens.density.values[-1,:,:]);
gives me this error:
--------------------------------------------------------------------------- typeerror traceback (most recent call last) cell in[21], line 1 ----> 1 m.contourf(dens.density.values[-1,:,:]) typeerror: basemap.contourf() missing 2 required positional arguments: 'y' and 'data'
Another edit: I keep discovering more and after reading the documentation for basemap I realized the syntax of the command should be like this
m.contourf(dens.lon.values,dens.lat.values,dens.density.values[-1,:,:]);
But now I get this error:
IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed
I'm guessing this is because my density array is 2D, but how do I extract the density values from it? I'm using [-1] in the time dimension because I actually only need the last time step
Thanks again in advance, Yotam
Last edit
This is the final plot, how can I make the surrounding land gray instead of purple? Also, is there a way to describe a larger geographic area, slightly larger, without messing up the data?
Here are the new numbers for my actual data
Plotting using basemaps and xarray has been discussedhere一个>.
m = basemap(llcrnrlon=data['lon'].min(), llcrnrlat=data['lat'].min(), urcrnrlon=data['lon'].max(), urcrnrlat=data['lat'].max(), resolution='i', suppress_ticks=1) m.drawcoastlines(); m.fillcontinents(color='gray',lake_color='gray') dens.density[-1,:,:].plot.contourf() plt.show()
The above code should work. I use cartopy to handle features like coastlines and borders. Below is a working code snippet for you to try using the dataset.
import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cf ds = xr.open_dataset('filename.nc') fig = plt.figure(figsize=(8,8)) crs=ccrs.platecarree() ax = fig.add_subplot(1,1,1, projection=crs) gl = ax.gridlines(crs=crs, draw_labels=true, linewidth=0.01, color='gray', alpha=0.5, linestyle='-.') ax.add_feature(cf.coastline.with_scale("50m"), lw=0.5) ax.add_feature(cf.borders.with_scale("50m"), lw=0.3) ds.density[-1,:,:].plot.contourf() plt.show()
To set all purple (zeros) to white, you can use the following cmap.
from matplotlib.colors import LinearSegmentedColormap cm = LinearSegmentedColormap.from_list('', ['white', *plt.cm.Blues(np.arange(255))]) ds.density[-1,:,:].plot.contourf(cmap=cm)
The above is the detailed content of How to plot density array using matplotlib.pyplot.contourf. For more information, please follow other related articles on the PHP Chinese website!