search
HomeBackend DevelopmentGolangPorting AES encryption functionality to node.js

将 AES 加密功能移植到 node.js

Question content

I am trying to port a go program (https://github.com/mckael/samtv) to node.js, which can be passed "smartview" api controls Samsung TV

There is an "aes encryption" feature in the program that I'm having trouble porting to node.

func (s *smartviewsession) aesencrypt(plaindata []byte) ([]byte, error) {
    //logrus.debugf("aesencrypt(%#v) : '%s'", plaindata, string(plaindata))
    //logrus.debugf("session id:  %d", s.sessionid)
    //logrus.debugf("session key: '%x'\n  %v", string(s.sessionkey), s.sessionkey)

    // create cipher block
    block, err := aes.newcipher(s.sessionkey)
    if err != nil {
        return nil, err
    }

    bs := block.blocksize()
    //logrus.debugf("block size: %d", bs)

    // add padding
    padding := bs - len(plaindata)%bs
    padtext := bytes.repeat([]byte{byte(padding)}, padding)
    //logrus.debugf("padding: %d byte(s)", padding)
    plaindata = append(plaindata, padtext...)

    // encrypt
    ciphertext := make([]byte, len(plaindata))
    for cipherrange := ciphertext; len(plaindata) > 0; {
        block.encrypt(cipherrange, plaindata[:bs])
        plaindata = plaindata[bs:]
        cipherrange = cipherrange[bs:]
    }

    //logrus.debugf("ciphertext: %#v", ciphertext)
    return ciphertext, nil
}

The problem I'm facing now is that I don't know what algorithmthim to use, or where I need to specify in my node.js function the "initial vector" comes from:

const SESSION_KEY = "59e8ca4b09f2a19ab5421cf55d604c7c";

var aesEncrypt = ((val, algo = "aes-256-cbc") => {
    let cipher = crypto.createCipheriv(algo, SESSION_KEY, IV);
    let encrypted = cipher.update(val, 'utf8', 'base64');
    encrypted += cipher.final('base64');
    return encrypted;
});

Can I use crypto.createcipher(...) instead? But it's been deprecated, and it feels like the padding stuff is important.

I know nothing about encryption. Any tips are welcome.

Note: In the go function, s.sessionkey has the same value as session_key = "59e8ca4b09f2a19ab5421cf55d604c7c" in node.js

Solution

go code applies aes in ecb mode and uses pkcs#7 padding. aes variants Implicit Derived from the key size, e.g. aes-128 for 16 byte keys. The ciphertext is returned as []byte.

In the nodejs code, the aes variant and mode are explicitly specified, such as aes-128-ecb. ecb mode does not apply IVs, so must be specified as null in createcipheriv(). Use padding pkcs#7 (default). The ciphertext can be returned as buffer, which is closest to []byte.

The published key 59e8ca4b09f2a19ab5421cf55d604c7c looks like a hex-encoded key, it is hex-decoded 16 bytes large and therefore corresponds to aes-128. Hexadecimal decoding can be implemented in go using the encoding/hex package, for example with hex.decodestring("59e8ca4b09f2a19ab5421cf55d604c7c").

Nodejs code example using aes-128 (16 byte key) and pkcs#7 padding in ecb mode:

var crypto = require('crypto');

const SESSION_KEY = Buffer.from("59e8ca4b09f2a19ab5421cf55d604c7c", "hex");

var aesEncrypt = ((val, algo = "aes-128-ecb") => {
    let cipher = crypto.createCipheriv(algo, SESSION_KEY, null);
    return Buffer.concat([cipher.update(val, 'utf8'), cipher.final()]);
});

var ciphertext = aesEncrypt("The quick brown fox jumps over the lazy dog");
console.log(ciphertext.toString('base64')); // T/uQforseVFkY93mqwpwCGVVnEFDTT5Gle8a8XUxCfOXCfYUo3uCJ/nwzCIJ9xqf

The go code gives the same results using the same key (hex decoding) and base64 encoding of plaintext and ciphertext.

For completeness: the key can also be encoded in utf-8 and then generate a 32-byte key, such as key := []byte("59e8ca4b09f2a19ab5421cf55d604c7c") and ## in the go code #const session_key = buffer.from("59e8ca4b09f2a19ab5421cf55d604c7c", "utf-8") nodejs code. In nodejs code, aes-256-ecb must also be applied. Ultimately, the key specification must provide information on which encoding to use.

Please note that ecb mode is not safe. Nowadays it is common to use authenticated encryption, for example via gcm mode.

The above is the detailed content of Porting AES encryption functionality to node.js. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:stackoverflow. If there is any infringement, please contact admin@php.cn delete
Implementing Mutexes and Locks in Go for Thread SafetyImplementing Mutexes and Locks in Go for Thread SafetyMay 05, 2025 am 12:18 AM

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

Benchmarking and Profiling Concurrent Go CodeBenchmarking and Profiling Concurrent Go CodeMay 05, 2025 am 12:18 AM

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

Error Handling in Concurrent Go Programs: Avoiding Common PitfallsError Handling in Concurrent Go Programs: Avoiding Common PitfallsMay 05, 2025 am 12:17 AM

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

Implicit Interface Implementation in Go: The Power of Duck TypingImplicit Interface Implementation in Go: The Power of Duck TypingMay 05, 2025 am 12:14 AM

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

Go Error Handling: Best Practices and PatternsGo Error Handling: Best Practices and PatternsMay 04, 2025 am 12:19 AM

In Go programming, ways to effectively manage errors include: 1) using error values ​​instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values ​​for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

How do you implement concurrency in Go?How do you implement concurrency in Go?May 04, 2025 am 12:13 AM

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Building Concurrent Data Structures in GoBuilding Concurrent Data Structures in GoMay 04, 2025 am 12:09 AM

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Comparing Go's Error Handling to Other Programming LanguagesComparing Go's Error Handling to Other Programming LanguagesMay 04, 2025 am 12:09 AM

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.