


When processing JSON data, we usually use the json.Unmarshal function to parse the JSON string into a structure in the Go language. However, calling the json.Unmarshal function inside the UnmarshalJSON function may cause a stack overflow error. This is because the UnmarshalJSON function calls itself again when parsing JSON data, causing an infinite loop. To avoid this, we can use the Decode method of json.Decoder to parse the JSON data instead of calling the json.Unmarshal function directly. Doing this ensures that stack overflow problems will not occur and ensures the robustness and performance of the code.
Question content
I would like to perform some additional steps to initialize the data structure in my implementation of UnmarshalJSON
. Calling json.Unmarshal(b, type)
in this implementation will naturally cause a stack overflow.
JSON decoder keeps trying to find if there is a custom UnmarshalJSON
implementation before calling json.Unmarshal
again.
Is there any other way to do this? Wouldn't just calling the underlying default implementation cause this problem?
Workaround
A simple and common way to avoid/prevent this situation is to use the type
keyword, and Use typeconversion to pass a value of that type (which can be type-converted if it is your original value, since the new type has the original type as its underlying type).
This works because the type
keyword creates a new type, and the new type will have zero methods (it will not "inherit" the base type's methods).
Will this incur some runtime overhead? no. Quoted from Specification: Conversion:
Let's look at an example. We have a Person
type with a number Age
, and we want to make sure that Age
cannot be negative (less than 0
).
type Person struct { Name string `json:"name"` Age int `json:"age"` } func (p *Person) UnmarshalJSON(data []byte) error { type person2 Person if err := json.Unmarshal(data, (*person2)(p)); err != nil { return err } // Post-processing after unmarshaling: if p.Age < 0 { p.Age = 0 } return nil }
Test it:
var p *Person fmt.Println(json.Unmarshal([]byte(`{"name":"Bob","age":10}`), &p)) fmt.Println(p) fmt.Println(json.Unmarshal([]byte(`{"name":"Bob","age":-1}`), &p)) fmt.Println(p)
Output (try on Go Playground):
<nil> &{Bob 10} <nil> &{Bob 0}
Of course, the same technique also applies to custom marshaling (MarshalJSON()
):
func (p *Person) MarshalJSON() ([]byte, error) { // Pre-processing before marshaling: if p.Age < 0 { p.Age = 0 } type person2 Person return json.Marshal((*person2)(p)) }
Test it:
p = &Person{"Bob", 10} fmt.Println(json.NewEncoder(os.Stdout).Encode(p)) p = &Person{"Bob", -1} fmt.Println(json.NewEncoder(os.Stdout).Encode(p))
Output (in the same Go Playground example):
{"name":"Bob","age":10} <nil> {"name":"Bob","age":0} <nil>
A very similar problem is when you define the String() string method for a custom text representation of the
的自定义文本表示定义 fmt
package, and you want to To use the default string representation that you modified. Read more about it here: Difference Between t and *t
The above is the detailed content of Calling json.Unmarshal within the UnmarshalJSON function does not cause stack overflow. For more information, please follow other related articles on the PHP Chinese website!

我有下面的代码:publicSecurityFilterChainsecurityFilterChain(HttpSecurityhttp)throwsException{returnhttp.httpBasic().disable().cors().and().csrf().disable().authorizeHttpRequests().requestMatchers("

是的,C++Lambda表达式可以通过使用std::function支持递归:使用std::function捕获Lambda表达式的引用。通过捕获的引用,Lambda表达式可以递归调用自身。

我目前正在编写Golang+CGO程序,并将在CGO中使用posixucontext。由于我所有的核心逻辑都将在ucontext的bind函数中,所以我们应该捕获所有错误的代码。我通过访问空指针来测试它,这给了我完全不同的行为,所有这些行为都取决于ucontext使用的堆栈位置。以下是带有简化示例的更多详细信息。如果我在线程的堆栈上分配ucontext堆栈,它将触发SIGSEGV。但如果我在堆上分配它,它会首先触发SIGSEGV,然后在调用morestack_noctxt时触发SIGT

如何解决C++运行时错误:'stackoverflow'在C++程序中,当递归层数过深或者程序使用的内存超出栈的容量会导致运行时错误"stackoverflow"。这种错误发生时,程序会崩溃,并且很难找出具体的原因。本文将介绍一些解决'stackoverflow'错误的方法,并提供一些代码示例。运行时错误"stackoverflow"的主要原因是栈内

递归算法通过函数自调用解决结构化的问题,优点是简洁易懂,缺点是效率较低且可能发生堆栈溢出;非递归算法通过显式管理堆栈数据结构避免递归,优点是效率更高且避免堆栈溢出,缺点是代码可能更复杂。选择递归或非递归取决于问题和实现的具体限制。

函数对C++程序性能的影响包括函数调用开销、局部变量和对象分配开销:函数调用开销:包括堆栈帧分配、参数传递和控制权转移,对小函数影响显著。局部变量和对象分配开销:大量局部变量或对象创建和销毁会导致堆栈溢出和性能下降。

Java和Haskell函数的主要区别在于:语法:Java使用return关键字返回结果,而Haskell使用赋值符号(=)。执行模型:Java采用顺序执行,而Haskell采用懒惰求值。类型系统:Java具有静态类型系统,而Haskell具有强大的灵活类型系统,可在编译时和运行时检查类型。实战性能:Haskell在处理大输入时比Java更有效,因为它使用尾递归,而Java使用递归。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Dreamweaver CS6
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1
Powerful PHP integrated development environment
