In web development, we often encounter situations where we need to make simultaneous requests between two separate rate limiting endpoints. At this point, we need to find a way to ensure that requests are sent within the appropriate time and wait when the rate limit is reached. In this article, PHP editor Apple will introduce a solution to help you implement this synchronous request function and ensure data accuracy and stability. Let’s take a look at the specific implementation of this solution!
Question content
I'm using some 3rd party api's and each api has its own rate limit. Endpoint 1 has a rate limit of 10/s and Endpoint 2 has a rate limit of 20/s.
I need to process data through endpoint 1 which will return an array of objects (between 2-3000 objects). I then need to get each object and send some data to a second endpoint while respecting the second endpoint's rate limit.
I plan to batch send 10 requests at a time in my go routine, ensuring that if all 10 requests complete in
Ultimately, I would like to be able to limit the number of concurrent responses each endpoint can issue at one time. Especially if I have to retry a failed request due to something like 500+ responses from the server.
For the purpose of the question, I used httpbin requests to simulate the following scenario:
package main import ( "bytes" "encoding/json" "fmt" "io" "net/http" "sync" "time" ) type HttpBinGetRequest struct { url string } type HttpBinGetResponse struct { Uuid string `json:"uuid"` StatusCode int } type HttpBinPostRequest struct { url string uuid string // Item to post to API } type HttpBinPostResponse struct { Data string `json:"data"` StatusCode int } func main() { // Prepare GET requests for 500 requests var requests []*HttpBinGetRequest for i := 0; i < 500; i++ { uri := "https://httpbin.org/uuid" request := &HttpBinGetRequest{ url: uri, } requests = append(requests, request) } // Create semaphore and rate limit for the GET endpoint getSemaphore := make(chan struct{}, 10) getRate := make(chan struct{}, 10) for i := 0; i < cap(getRate); i++ { getRate <- struct{}{} } go func() { // ticker corresponding to 1/10th of a second ticker := time.NewTicker(100 * time.Millisecond) defer ticker.Stop() for range ticker.C { _, ok := <-getRate if !ok { return } } }() // Send our GET requests to obtain a random UUID var wg sync.WaitGroup for _, request := range requests { wg.Add(1) // Go func to make request and receive the response go func(r *HttpBinGetRequest) { defer wg.Done() // Check the rate limiter and block if it is empty getRate <- struct{}{} // Add a token to the semaphore getSemaphore <- struct{}{} // Remove token when function is complete defer func() { <-getSemaphore }() resp, _ := get(r) fmt.Printf("%+v\n", resp) }(request) } wg.Wait() // I need to add code that obtains the response data from the above for loop // then sends the UUID it to its own go routines for a POST request, following a similar pattern above // To not violate the rate limit of the second endpoint which is 20 calls per second // postSemaphore := make(chan struct{}, 20) // postRate := make(chan struct{}, 20) // for i := 0; i < cap(postRate); i++ { // postRate <- struct{}{} // } } func get(hbgr *HttpBinGetRequest) (*HttpBinGetResponse, error) { httpResp := &HttpBinGetResponse{} client := &http.Client{} req, err := http.NewRequest("GET", hbgr.url, nil) if err != nil { fmt.Println("error making request") return httpResp, err } req.Header = http.Header{ "accept": {"application/json"}, } resp, err := client.Do(req) if err != nil { fmt.Println(err) fmt.Println("error getting response") return httpResp, err } // Read Response body, err := io.ReadAll(resp.Body) if err != nil { fmt.Println("error reading response body") return httpResp, err } json.Unmarshal(body, &httpResp) httpResp.StatusCode = resp.StatusCode return httpResp, nil } // Method to post data to httpbin func post(hbr *HttpBinPostRequest) (*HttpBinPostResponse, error) { httpResp := &HttpBinPostResponse{} client := &http.Client{} req, err := http.NewRequest("POST", hbr.url, bytes.NewBuffer([]byte(hbr.uuid))) if err != nil { fmt.Println("error making request") return httpResp, err } req.Header = http.Header{ "accept": {"application/json"}, } resp, err := client.Do(req) if err != nil { fmt.Println("error getting response") return httpResp, err } if resp.StatusCode == 429 { fmt.Println(resp.Header.Get("Retry-After")) } // Read Response body, err := io.ReadAll(resp.Body) if err != nil { fmt.Println("error reading response body") return httpResp, err } json.Unmarshal(body, &httpResp) httpResp.StatusCode = resp.StatusCode fmt.Printf("%+v", httpResp) return httpResp, nil }
Solution
This is the producer/consumer pattern. You can use chan to connect them.
Regarding the rate limiter, I would use package golang.org/x/time/rate
.
Since we decided to use chan to connect producers and consumers, it is natural to send failed tasks to the same chan so that consumers can try again.
I have encapsulated the logic into the scheduler[t]
type. See demo below. Please note that this demo was hastily written to illustrate the idea only. Not thoroughly tested.
package main import ( "context" "fmt" "io" "log" "math/rand" "net/http" "net/http/httptest" "sort" "sync" "time" "golang.org/x/time/rate" ) type task[t any] struct { param t failedcount int } type scheduler[t any] struct { name string limit int maxtries int wg sync.waitgroup tasks chan task[t] action func(param t) error } // newscheduler creates a scheduler that runs the action with the specified rate limit. // it will retry the action if the action returns a non-nil error. func newscheduler[t any](name string, limit, maxtries, chansize int, action func(param t) error) *scheduler[t] { return &scheduler[t]{ name: name, limit: limit, maxtries: maxtries, tasks: make(chan task[t], chansize), action: action, } } func (s *scheduler[t]) addtask(param t) { s.wg.add(1) s.tasks <- task[t]{param: param} } func (s *scheduler[t]) retrylater(t task[t]) { s.wg.add(1) s.tasks <- t } func (s *scheduler[t]) run() { lim := rate.newlimiter(rate.limit(s.limit), 1) for t := range s.tasks { t := t if err := lim.wait(context.background()); err != nil { log.fatalf("wait: %s", err) return } go func() { defer s.wg.done() err := s.action(t.param) if err != nil { log.printf("task %s, param %v failed: %v", s.name, t.param, err) t.failedcount++ if t.failedcount == s.maxtries { log.printf("task %s, param %v failed with %d tries", s.name, t.param, s.maxtries) return } s.retrylater(t) } }() } } func (s *scheduler[t]) wait() { s.wg.wait() close(s.tasks) } func main() { s := &server{} ts := httptest.newserver(s) defer ts.close() schedulerpost := newscheduler("post", 20, 3, 1, func(param string) error { return post(fmt.sprintf("%s/%s", ts.url, param)) }) go schedulerpost.run() schedulerget := newscheduler("get", 10, 3, 1, func(param int) error { id, err := get(fmt.sprintf("%s/%d", ts.url, param)) if err != nil { return err } schedulerpost.addtask(id) return nil }) go schedulerget.run() for i := 0; i < 100; i++ { schedulerget.addtask(i) } schedulerget.wait() schedulerpost.wait() s.printstats() } func get(url string) (string, error) { resp, err := http.get(url) if err != nil { return "", err } defer resp.body.close() if resp.statuscode != 200 { return "", fmt.errorf("unexpected status code: %d", resp.statuscode) } body, err := io.readall(resp.body) if err != nil { return "", err } return string(body), nil } func post(url string) error { resp, err := http.post(url, "", nil) if err != nil { return err } defer resp.body.close() if resp.statuscode != 200 { return fmt.errorf("unexpected status code: %d", resp.statuscode) } return nil } type server struct { gmu sync.mutex gets []int64 pmu sync.mutex posts []int64 } func (s *server) servehttp(w http.responsewriter, r *http.request) { log.printf("%s: %s", r.method, r.url.path) // collect request stats. if r.method == http.methodget { s.gmu.lock() s.gets = append(s.gets, time.now().unixmilli()) s.gmu.unlock() } else { s.pmu.lock() s.posts = append(s.posts, time.now().unixmilli()) s.pmu.unlock() } n := rand.intn(1000) // simulate latency. time.sleep(time.duration(n) * time.millisecond) // simulate errors. if n%10 == 0 { w.writeheader(http.statusinternalservererror) return } if r.method == http.methodget { fmt.fprintf(w, "%s", r.url.path[1:]) return } } func (s *server) printstats() { log.printf("gets (total: %d):\n", len(s.gets)) printstats(s.gets) log.printf("posts (total: %d):\n", len(s.posts)) printstats(s.posts) } func printstats(ts []int64) { sort.slice(ts, func(i, j int) bool { return ts[i] < ts[j] }) count := 0 to := ts[0] + 1000 for i := 0; i < len(ts); i++ { if ts[i] < to { count++ } else { fmt.printf(" %d: %d\n", to, count) i-- // push back the current item count = 0 to += 1000 } } if count > 0 { fmt.printf(" %d: %d\n", to, count) } }
The output looks like this:
... 2023/03/25 21:03:30 GETS (total: 112): 1679749398998: 10 1679749399998: 10 1679749400998: 10 1679749401998: 10 1679749402998: 10 1679749403998: 10 1679749404998: 10 1679749405998: 10 1679749406998: 10 1679749407998: 10 1679749408998: 10 1679749409998: 2 2023/03/25 21:03:30 POSTS (total: 111): 1679749399079: 8 1679749400079: 8 1679749401079: 12 1679749402079: 8 1679749403079: 10 1679749404079: 9 1679749405079: 9 1679749406079: 8 1679749407079: 14 1679749408079: 12 1679749409079: 9 1679749410079: 4
The above is the detailed content of Synchronize requests between two separate rate limiting endpoints. For more information, please follow other related articles on the PHP Chinese website!

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver CS6
Visual web development tools