


Currently I will be collecting data from dioceses around the world.
My method works with bs4 and pandas. I'm currently working on scraping logic.
import requests from bs4 import BeautifulSoup import pandas as pd url = "http://www.catholic-hierarchy.org/" # Send a GET request to the website response = requests.get(url) #my approach to parse the HTML content of the page soup = BeautifulSoup(response.text, 'html.parser') # Find the relevant elements containing diocese information diocese_elements = soup.find_all("div", class_="diocesan") # Initialize empty lists to store data dioceses = [] addresses = [] # Extract now data from each diocese element for diocese_element in diocese_elements: # Example: Extracting diocese name diocese_name = diocese_element.find("a").text.strip() dioceses.append(diocese_name) # Example: Extracting address address = diocese_element.find("div", class_="address").text.strip() addresses.append(address) # to save the whole data we create a DataFrame using pandas data = {'Diocese': dioceses, 'Address': addresses} df = pd.DataFrame(data) # Display the DataFrame print(df)
Currently I discovered something strange on my pycharm. I'm trying to find a way to collect all the data using pandas methods.
Correct Answer
This example will get you started - it will parse all parish pages to get the parish name url and store it into a dataframe in panda.
You can then iterate over these urls and get more information you need.
import pandas as pd import requests from bs4 import beautifulsoup chars = "abcdefghijklmnopqrstuvwxyz" url = "http://www.catholic-hierarchy.org/diocese/la{char}.html" all_data = [] for char in chars: u = url.format(char=char) while true: print(f"parsing {u}") soup = beautifulsoup(requests.get(u).content, "html.parser") for a in soup.select("li a[href^=d]"): all_data.append( { "name": a.text, "url": "http://www.catholic-hierarchy.org/diocese/" + a["href"], } ) next_page = soup.select_one('a:has(img[alt="[next page]"])') if not next_page: break u = "http://www.catholic-hierarchy.org/diocese/" + next_page["href"] df = pd.dataframe(all_data).drop_duplicates() print(df.head(10))
Print:
... Parsing http://www.catholic-hierarchy.org/diocese/lax.html Parsing http://www.catholic-hierarchy.org/diocese/lay.html Parsing http://www.catholic-hierarchy.org/diocese/laz.html Name URL 0 Holy See http://www.catholic-hierarchy.org/diocese/droma.html 1 Diocese of Rome http://www.catholic-hierarchy.org/diocese/droma.html 2 Aachen http://www.catholic-hierarchy.org/diocese/da549.html 3 Aachen http://www.catholic-hierarchy.org/diocese/daach.html 4 Aarhus (Århus) http://www.catholic-hierarchy.org/diocese/da566.html 5 Aba http://www.catholic-hierarchy.org/diocese/dabaa.html 6 Abaetetuba http://www.catholic-hierarchy.org/diocese/dabae.html 8 Abakaliki http://www.catholic-hierarchy.org/diocese/dabak.html 9 Abancay http://www.catholic-hierarchy.org/diocese/daban.html 10 Abaradira http://www.catholic-hierarchy.org/diocese/d2a01.html
The above is the detailed content of Beautiful Soup parse list of many entries and save in dataframe. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version
Chinese version, very easy to use
