In PHP development, database operations are very common tasks. In database operations, querying multiple fields is a common requirement. In response to this demand, go-gorm is a powerful ORM library that can help developers query multiple fields quickly and efficiently. In this article, PHP editor Xinyi will introduce how to query multiple fields in go-gorm, and give corresponding sample code to help you easily master this technique. Whether you are a beginner or an experienced developer, this article can provide you with valuable help and guidance. Let’s take a look!
Question content
I have the following models:
<code>type User struct { ID uuid.UUID `gorm:"type:uuid;default:uuid_generate_v4();primary_key" json:"id"` ... } type Environment struct { ID uuid.UUID `gorm:"type:uuid;default:uuid_generate_v4();primary_key" json:"id"` UserId uuid.UUID `gorm:"type:uuid" json:"userId"` User User `gorm:"foreignKey:UserId;references:ID;constraint:OnUpdate:CASCADE,OnDelete:CASCADE;" json:"-"` ... } type Secret struct { ID uuid.UUID `gorm:"type:uuid;default:uuid_generate_v4();primary_key" json:"id"` UserId uuid.UUID `gorm:"type:uuid" json:"userId"` User User `gorm:"foreignKey:UserId;references:ID;constraint:OnUpdate:CASCADE,OnDelete:CASCADE;" json:"-"` Environments []Environment `gorm:"many2many:environment_secrets;constraint:OnUpdate:CASCADE,OnDelete:CASCADE;" json:"environments"` ... } </code>
When you create a secret with one or more environments, the environment_secrets
table creates one or more rows based on how many environments share the same secret:
secret_id | environment_id -------------------------- uuid | uuid
What I want to do is query the environments
field in the secrets
table.
The problem I'm having is that while Preload
inserts data into the environments
field, it doesn't seem to be available during the Find
clause:
<code>var secrets []models.Secret if err := db.Preload("Environments").Find(&secrets, "user_id=? AND ? @> environments.id", userSessionId, environmentId).Error; err != nil { return c.Status(fiber.StatusOK).JSON( fiber.Map{"error": err.Error()}, ) } // ERROR: missing FROM-clause entry for table "environments" (SQLSTATE 42P01) </code>
In a nutshell, I'm trying to write this query: In the "secrets" table, look for matching userIds that own these secrets, and look at the associated "environments.id" fields in the secrets to find matching UUIDs The specific environment UUID (which will also be owned by this user)
.
For example, if I use this 92a4c405-f4f7-44d9-92df-76bd8a9ac3a6
user UUID query secrets
to check ownership, and use this cff8d599-3822-474d- a980-fb054fb9 queries the 23cc
environment UUID, then the result output should look like...
<code>[ { "id": "63f3e041-f6d9-4334-95b4-d850465a588a", "userId": "92a4c405-f4f7-44d9-92df-76bd8a9ac3a6", // field to determine ownership by specific user "environments": [ { "id": "cff8d599-3822-474d-a980-fb054fb923cc", // field to determine a matching environment UUID "userId": "92a4c405-f4f7-44d9-92df-76bd8a9ac3a6", // owned by same user "name": "test1", "createdAt": "2023-08-24T09:27:14.065237-07:00", "updatedAt": "2023-08-24T09:27:14.065237-07:00" }, { "id": "65e30501-3bc9-4fbc-8b87-2f4aa57b461f", // this secret happens to also be shared with another environment, however this data should also be included in the results "userId": "92a4c405-f4f7-44d9-92df-76bd8a9ac3a6", // owned by same user "name": "test2", "createdAt": "2023-08-24T12:50:38.73195-07:00", "updatedAt": "2023-08-24T12:50:38.73195-07:00" } ], "key": "BAZINGA", "value": "JDJhJDEwJHR5VjRWZ3l2VjZIbXJoblhIMU1D", "createdAt": "2023-08-24T12:51:05.999483-07:00", "updatedAt": "2023-08-24T12:51:05.999483-07:00" } ...etc ] </code>
Is there a JOIN query or maybe a raw SQL query that I can write to make the environments
rows of data available in secrets
for querying?
Workaround
Not pretty, but this raw dog GORM SQL query works as expected:
SELECT * FROM ( SELECT s.id, s.user_id, s.key, s.value, s.created_at, s.updated_at, jsonb_agg(envs) as environments FROM secrets s JOIN environment_secrets es ON s.id = es.secret_id JOIN environments envs on es.environment_id = envs.id WHERE s.user_id = ? GROUP BY s.id ) r WHERE r.environments @> ?;
The query can be understood as...
Aggregate secrets into r
(the result) where the environments
field has:
- Secret ID matching multiple pairs of table secret IDs
- Multi-table environment ID matching the environment ID
- And filter based on the secret user ID matching the parameter user ID
Find the partial parameterized id
in the environments
JSON array from r
(result).
And some example Go code using go Fiber:
import ( "time" "github.com/gofiber/fiber/v2" "github.com/google/uuid" "gorm.io/datatypes" ) type SecretResult struct { ID uuid.UUID `json:"id"` UserId uuid.UUID `json:"userId"` Environments datatypes.JSON `json:"environments"` Key string `json:"key"` Value []byte `json:"value"` CreatedAt time.Time `json:"createdAt"` UpdatedAt time.Time `json:"updatedAt"` } func Example(c *fiber.Ctx) error { db := database.ConnectToDB(); userSessionId := c.Locals("userSessionId").(uuid.UUID) parsedEnvId, err := uuid.Parse(c.Params("id")) if err != nil { return c.Status(fiber.StatusBadRequest).JSON( fiber.Map{"error": "You must provide a valid environment id!"}, ) } var secrets []SecretResult if err := db.Raw(` USE SQL QUERY MENTIONED ABOVE `, userSessionId,`[{"id":"`+parsedEnvId.String()+`"}]`), ).Scan(&secrets).Error; err != nil { fmt.Printf("Failed to load secrets with %s: %s", parsedEnvId, err.Error()) return c.Status(fiber.StatusInternalServerError).JSON( fiber.Map{"error": "Failed to locate any secrets with that id."}, ) } return c.Status(fiber.StatusOK).JSON(secrets) }
The above is the detailed content of go-gorm queries multi-bit fields. For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Chinese version
Chinese version, very easy to use
