search
HomeDatabaseMysql TutorialMySQL查询优化之explain的深入解析_MySQL

MySQLexplain

bitsCN.com

在分析查询性能时,考虑EXPLAIN关键字同样很管用。EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数。explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作。

一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列: 

说明
id MySQL Query Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。


select_type 查询类型 说明
SIMPLE 简单的 select 查询,不使用 union 及子查询
PRIMARY 最外层的 select 查询
UNION UNION 中的第二个或随后的 select 查询,不 依赖于外部查询的结果集
DEPENDENT UNION UNION 中的第二个或随后的 select 查询,依 赖于外部查询的结果集
SUBQUERY 子查询中的第一个 select 查询,不依赖于外 部查询的结果集
DEPENDENT SUBQUERY 子查询中的第一个 select 查询,依赖于外部 查询的结果集
DERIVED 用于 from 子句里有子查询的情况。 MySQL 会 递归执行这些子查询, 把结果放在临时表里。
UNCACHEABLE SUBQUERY 结果集不能被缓存的子查询,必须重新为外 层查询的每一行进行评估。
UNCACHEABLE UNION UNION 中的第二个或随后的 select 查询,属 于不可缓存的子查询


说明
table 输出行所引用的表


type 重要的项,显示连接使用的类型,按最 优到最差的类型排序 说明
system 表仅有一行(=系统表)。这是 const 连接类型的一个特例。
const const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。
eq_ref const 用于用常数值比较 PRIMARY KEY 时。当 查询的表仅有一行时,使用 System。
ref 连接不能基于关键字选择单个行,可能查找 到多个符合条件的行。 叫做 ref 是因为索引要 跟某个参考值相比较。这个参考值或者是一 个常数,或者是来自一个表里的多表查询的 结果值。
ref_or_null 如同 ref, 但是 MySQL 必须在初次查找的结果 里找出 null 条目,然后进行二次查找。
index_merge 说明索引合并优化被使用了。
unique_subquery 在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table WHERE some_expr)
index_subquery 在 某 些 IN 查 询 中 使 用 此 种 类 型 , 与 unique_subquery 类似,但是查询的是非唯一 性索引: value IN (SELECT key_column FROM single_table WHERE some_expr)
range 只检索给定范围的行,使用一个索引来选择 行。key 列显示使用了哪个索引。当使用=、 、>、>=、、BETWEEN 或者 IN 操作符,用常量比较关键字列时,可 以使用 range。
index 全表扫描,只是扫描表的时候按照索引次序 进行而不是行。主要优点就是避免了排序, 但是开销仍然非常大。
all 最坏的情况,从头到尾全表扫描。



说明
possible_keys 指出 MySQL 能在该表中使用哪些索引有助于 查询。如果为空,说明没有可用的索引。


说明
key MySQL 实际从 possible_key 选择使用的索引。 如果为 NULL,则没有使用索引。很少的情况 下,MYSQL 会选择优化不足的索引。这种情 况下,可以在 SELECT 语句中使用 USE INDEX (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引


说明
key_len 使用的索引的长度。在不损失精确性的情况 下,长度越短越好。


说明
ref 显示索引的哪一列被使用了


说明
rows MYSQL 认为必须检查的用来返回请求数据的行数


说明
rows MYSQL 认为必须检查的用来返回请求数据的行数


extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。

extra 项 说明
Using filesort 表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为“文件排序”
Using temporary 表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by。

下面来举一个例子来说明下 explain 的用法。
先来一张表:

CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);

再插几条数据:

INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');

需求:
查询 category_id 为 1 且 comments 大于 1 的情况下,views 最多的 article_id。
先查查试试看:

EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1/G

看看部分输出结果:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 3
        Extra: Using where; Using filesort
1 row in set (0.00 sec)

很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。

嗯,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了 category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。

ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );

结果有了一定好转,但仍然很糟糕:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: range
possible_keys: x
          key: x
      key_len: 8
          ref: NULL
         rows: 1
        Extra: Using where; Using filesort
1 row in set (0.00 sec)

type 变成了 range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,因comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索,即 range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:

 DROP INDEX x ON article;

然后建立新索引:

ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;

接着再运行查询:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: const
         rows: 1
        Extra: Using where
1 row in set (0.00 sec)

可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class 和 room。

CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;

然后再分别插入大量数据。插入数据的php脚本:

$link = mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i{
    $j   = rand(1,20);
    $sql = " insert into class(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i{
    $j   = rand(1,20);
    $sql = " insert into book(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i{
    $j   = rand(1,20);
    $sql = " insert into phone(card) values({$j})";
    mysql_query($sql);
}
mysql_query("COMMIT");
?>

然后来看一个左连接查询:

explain select * from class left join book on class.card = book.card/G

分析结果是:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
2 rows in set (0.00 sec)

显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:

ALTER TABLE `book` ADD INDEX y ( `card`);


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra:
2 rows in set (0.00 sec)

可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:

DROP INDEX y ON book;

建立新索引。

ALTER TABLE `class` ADD INDEX x ( `card`);

结果

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
2 rows in set (0.00 sec)

基本无变化。
       然后来看一个右连接查询:

explain select * from class right join book on class.card = book.card;

分析结果是:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra:
2 rows in set (0.00 sec)

优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:

DROP INDEX x ON class;

建立新索引。

ALTER TABLE `book` ADD INDEX y ( `card`);

结果

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
2 rows in set (0.00 sec)

基本无变化。

最后来看看 inner join 的情况:

explain select * from class inner join book on class.card = book.card;

结果:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra:
2 rows in set (0.00 sec)

删除旧索引:

DROP INDEX y ON book;

结果

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
2 rows in set (0.00 sec)

建立新索引。

ALTER TABLE `class` ADD INDEX x ( `card`);

结果

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
2 rows in set (0.00 sec)

综上所述,inner join 和 left join 差不多,都需要优化右表。而 right join 需要优化左表。

我们再来看看三表查询的例子

添加一个新索引:

ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);


explain select * from class left join book on class.card=book.card left join phone on book.card = phone.card;


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra:
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra:
*************************** 3. row ***************************
           id: 1
  select_type: SIMPLE
        table: phone
         type: ref
possible_keys: z
          key: z
      key_len: 4
          ref: test.book.card
         rows: 260
        Extra: Using index
3 rows in set (0.00 sec)

后 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。

MySql 中的 explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。

bitsCN.com
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
深入解析C语言中static关键字的作用和用法深入解析C语言中static关键字的作用和用法Feb 20, 2024 pm 04:30 PM

深入解析C语言中static关键字的作用和用法在C语言中,static是一种非常重要的关键字,它可以被用于函数、变量和数据类型的定义上。使用static关键字可以改变对象的链接属性、作用域和生命周期,下面就来详细地解析一下static关键字在C语言中的作用和用法。static变量和函数:在函数内部使用static关键字定义的变量称为静态变量,它具有全局生命周

PHP中var关键字的作用和示例PHP中var关键字的作用和示例Jun 28, 2023 pm 08:58 PM

PHP中var关键字的作用和示例在PHP中,var关键字用于声明一个变量。以前的PHP版本中,使用var关键字是声明成员变量的惯用方式,现在已经不再推荐使用。然而,在某些情况下,var关键字依然会被使用。var关键字主要用于声明一个局部变量,并且会自动将该变量标记为局部作用域。这意味着该变量仅在当前的代码块中可见,并且不能在其他函数或代码块中访问。使用var

C语言中go是关键字吗?详细解析C语言中go是关键字吗?详细解析Mar 16, 2024 am 10:30 AM

标题:C语言中go是关键字吗?详细解析在C语言中,"go"并不是一个关键字。C语言的关键字是由C标准规定的,用于表示特定的语法结构或者功能,在编译器中有特殊的含义,不能被用作标识符或者变量名。例如,关键字"int"表示整型数据类型,"if"表示条件语句等等。如果我们想验证在C语言中"go"是否是关键字,可以编写一个简单的程序进行测试。下面是一个例子:#inc

哈医大临床药学就业是否有前途(哈医大临床药学就业前景怎么样)哈医大临床药学就业是否有前途(哈医大临床药学就业前景怎么样)Jan 02, 2024 pm 08:54 PM

哈医大临床药学就业前景如何尽管全国就业形势不容乐观,但药科类毕业生仍然有着良好的就业前景。总体来看,药科类毕业生的供给量少于需求量,各医药公司和制药厂是吸纳这类毕业生的主要渠道,制药行业对人才的需求也在稳步增长。据介绍,近几年药物制剂、天然药物化学等专业的研究生供需比甚至达到1∶10。临床药学专业就业方向:临床医学专业学生毕业后可在医疗卫生单位、医学科研等部门从事医疗及预防、医学科研等方面的工作。就业岗位:医药代表、医药销售代表、销售代表、销售经理、区域销售经理、招商经理、产品经理、产品专员、护

c语言中关键字有多少个c语言中关键字有多少个Nov 22, 2022 pm 03:39 PM

C语言的关键字共有32个,根据关键字的作用,可分其为数据类型关键字、控制语句关键字、存储类型关键字和其它关键字四类。数据类型关键字有12个,包括char、double、float、int等;控制语句关键字有12个,包括for、break、if、else、do等;存储类型关键字有4个,包括auto、static、extern等;其它关键字有4个,包括const、sizeof等。

PHP中extends关键字的作用和使用方法详解PHP中extends关键字的作用和使用方法详解Jun 28, 2023 pm 08:04 PM

PHP中extends关键字的作用和使用方法详解在PHP编程中,extends是一个非常重要的关键字,它用于实现类的继承。通过extends关键字,我们可以创建一个新的类,这个新类可以继承一个或多个已有的类的属性和方法。继承是面向对象编程中的重要概念,它使得代码的复用和扩展变得更加方便和灵活。本文将详细介绍extends关键字的作用和使用方法。extends

go语言关键字大全go语言关键字大全Apr 07, 2024 pm 02:15 PM

Go语言的关键字有:基本关键字:const、func、type、var、if、else、for、return数据类型相关关键字:bool、string、int、float64、interface{}、map、slice其他关键字:break、continue、defer、go、select、range

go语言中while是关键字吗go语言中while是关键字吗Jun 04, 2021 pm 05:01 PM

在go语言中,while不是关键字,可以用for语句加break来实现while循环的效果,例“for {sum++ if sum>10{break}else{...}}”。go语言有break、default 、func、select、case、defer、go、map、else、goto、for、if、var等25个关键字。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),