search
HomeBackend DevelopmentGolangGo producer-consumer avoids deadlocks

Go 生产者消费者避免死锁

Question content

I have a code about consumer and producer. Although I asked this question here for code review, and a large part of the idea was derived from this thread, here is the code in the playground.

  • This code has multiple producers and consumers sharing the same channel.
  • This code has an error handling mechanism, if any worker (producer or consumer) makes an error, all workers should stop.

I'm worried about a deadlock scenario where all consumers are down but producers are still adding data to the shared channel. To "mitigate" this problem, I added a context check before adding the data to the data queue - specifically line 85 in the go playground.

However, a deadlock may still occur if the producer checks context.done() on line 85 and then cancels the context, causing all consumers to close and then ProducerTrying to insert data into the queue?

If so, how to alleviate it.

Repost code:

package main

import (
    "context"
    "fmt"
    "sync"
)

func main() {
    a1 := []int{1, 2, 3, 4, 5}
    a2 := []int{5, 4, 3, 1, 1}
    a3 := []int{6, 7, 8, 9}
    a4 := []int{1, 2, 3, 4, 5}
    a5 := []int{5, 4, 3, 1, 1}
    a6 := []int{6, 7, 18, 9}
    arrayOfArray := [][]int{a1, a2, a3, a4, a5, a6}

    ctx, cancel := context.WithCancel(context.Background())
    ch1 := read(ctx, arrayOfArray)

    messageCh := make(chan int)
    errCh := make(chan error)

    producerWg := &sync.WaitGroup{}
    for i := 0; i < 3; i++ {
        producerWg.Add(1)
        producer(ctx, producerWg, ch1, messageCh, errCh)
    }

    consumerWg := &sync.WaitGroup{}
    for i := 0; i < 3; i++ {
        consumerWg.Add(1)
        consumer(ctx, consumerWg, messageCh, errCh)
    }

    firstError := handleAllErrors(ctx, cancel, errCh)

    producerWg.Wait()
    close(messageCh)

    consumerWg.Wait()
    close(errCh)

    fmt.Println(<-firstError)
}

func read(ctx context.Context, arrayOfArray [][]int) <-chan []int {
    ch := make(chan []int)

    go func() {
        defer close(ch)

        for i := 0; i < len(arrayOfArray); i++ {
            select {
            case <-ctx.Done():
                return
            case ch <- arrayOfArray[i]:
            }
        }
    }()

    return ch
}

func producer(ctx context.Context, wg *sync.WaitGroup, in <-chan []int, messageCh chan<- int, errCh chan<- error) {
    go func() {
        defer wg.Done()
        for {
            select {
            case <-ctx.Done():
                return
            case arr, ok := <-in:
                if !ok {
                    return
                }

                for i := 0; i < len(arr); i++ {

                    // simulating an error.
                    //if arr[i] == 10 {
                    //  errCh <- fmt.Errorf("producer interrupted")
                    //}

                    select {
                    case <-ctx.Done():
                        return
                    case messageCh <- 2 * arr[i]:
                    }
                }
            }
        }
    }()
}

func consumer(ctx context.Context, wg *sync.WaitGroup, messageCh <-chan int, errCh chan<- error) {
    go func() {
        wg.Done()

        for {
            select {
            case <-ctx.Done():
                return
            case n, ok := <-messageCh:
                if !ok {
                    return
                }
                fmt.Println("consumed: ", n)

                // simulating erros
                //if n == 10 {
                //  errCh <- fmt.Errorf("output error during write")
                //}
            }
        }
    }()
}

func handleAllErrors(ctx context.Context, cancel context.CancelFunc, errCh chan error) <-chan error {
    firstErrCh := make(chan error, 1)
    isFirstError := true
    go func() {
        defer close(firstErrCh)
        for err := range errCh {
            select {
            case <-ctx.Done():
            default:
                cancel()
            }
            if isFirstError {
                firstErrCh <- err
                isFirstError = !isFirstError
            }
        }
    }()

    return firstErrCh
}

Correct answer


No you are fine, this will not deadlock on producer writes because you wrap the channel writes in select statement, so even if the channel write can't happen because the consumer has terminated, you'll still hit the context cancellation clause and terminate your producer.

Just to demonstrate the concept, you can run it and see that it does not deadlock, although it is trying to write to the channel without a reader.

package main

import (
    "context"
    "fmt"
    "time"
)

func main() {
    ctx, cancel := context.WithCancel(context.Background())
    ch := make(chan struct{})

    go func() {
        time.Sleep(1 * time.Second)
        cancel()
    }()

    select {
    case ch <- struct{}{}:
    case <-ctx.Done():
        fmt.Println("context canceled")
    }
    fmt.Println("bye!")
}

This is its playground link.

About some code simplification. If this were any kind of real life code, I'd probably just use group from golang.org/x/sync/errgroup . Or take a hint from them and utilize sync.once and wrap all producers and consumers with a function that generates a goroutine and can handle errors without using more in the error Complex error channel exhaust code handling functions.

The above is the detailed content of Go producer-consumer avoids deadlocks. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:stackoverflow. If there is any infringement, please contact admin@php.cn delete
Golang and Python: Understanding the DifferencesGolang and Python: Understanding the DifferencesApr 18, 2025 am 12:21 AM

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang vs. C  : Assessing the Speed DifferenceGolang vs. C : Assessing the Speed DifferenceApr 18, 2025 am 12:20 AM

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang: A Key Language for Cloud Computing and DevOpsGolang: A Key Language for Cloud Computing and DevOpsApr 18, 2025 am 12:18 AM

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.

Golang and C  : Understanding Execution EfficiencyGolang and C : Understanding Execution EfficiencyApr 18, 2025 am 12:16 AM

Golang and C each have their own advantages in performance efficiency. 1) Golang improves efficiency through goroutine and garbage collection, but may introduce pause time. 2) C realizes high performance through manual memory management and optimization, but developers need to deal with memory leaks and other issues. When choosing, you need to consider project requirements and team technology stack.

Golang vs. Python: Concurrency and MultithreadingGolang vs. Python: Concurrency and MultithreadingApr 17, 2025 am 12:20 AM

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

Golang and C  : The Trade-offs in PerformanceGolang and C : The Trade-offs in PerformanceApr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang vs. Python: Applications and Use CasesGolang vs. Python: Applications and Use CasesApr 17, 2025 am 12:17 AM

ChooseGolangforhighperformanceandconcurrency,idealforbackendservicesandnetworkprogramming;selectPythonforrapiddevelopment,datascience,andmachinelearningduetoitsversatilityandextensivelibraries.

Golang vs. Python: Key Differences and SimilaritiesGolang vs. Python: Key Differences and SimilaritiesApr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.