MySQLexplain
explain 可以分析 select 语句的执行,即 MySQL 的"执行计划。type 列
MySQL 在表里找到所需行的方式。包括(由左至右,由最差到最好): | All | index | range | ref | eq_ref | const,system | null |
ALL 全表扫描,MySQL 从头到尾扫描整张表查找行。 mysql> explain select * from a\G …
type: ALL
如果加上 limit 如 select * from a limit 100 MySQL 会扫描 100 行,但扫描方式不会变,还是从头到尾扫描。
index 按索引次序扫描表,就是先读索引,再读实际的行,其实还是全表扫描。主要优点是避免了排序,因为索引是排好序的。(按照索引的排序去读对应的数据行。) create table a(a_id int not null, key(a_id)); insert into a value(1),(2); mysql> explain select * from a\G
…
type: index
range 以范围的形式扫描索引建表: create table a(a_id int not null, key(a_id)); insert into a values(1),(2),(3),(4),(5),(6),(7),(8),(9),(10); mysql> explain select * from a where a_id > 1\G
…
type: range …
IN 比较符也会用 range 表示: mysql> explain select * from a where a_id in (1,3,4)\G
…
type: range
…
` ref 非唯一性索引访问建表: create table a(a_id int not null, key(a_id)); insert into a values(1),(2),(3),(4),(5),(6),(7),(8),(9),(10); mysql> explain select * from a where a_id=1\G
…
type: ref …
eq_ref 使用有唯一性索引查找(主键或唯一性索引)建表及插入数据: create table a(id int primary key); create table a_info(id int primary key, title char(1)); insert into a value(1),(2); insert into a_info value(1, 'a'),(2, 'b'); mysql> explain select * from a join a_info using(id);
…+--------+--------+…
…| table | type |…
…+--------+--------+…
…| a | index |…
…| a_info | eq_ref |…
…+--------+--------+… 此时 a_info 每条记录与 a 一一对应,通过主键 id 关联起来,所以 a_info 的 type 为 eq_ref.删除 a_info 的主键:ALTER TABLE `a_info` DROP PRIMARY KEY; 现在 a_info 已经没有索引了: mysql> explain select * from a join a_info using(id);
+----+…+--------+--------+… | id |…| table | type |… +----+…+--------+--------+… | 1 |…| a_info | ALL |… | 1 |…| a | eq_ref |… +----+…+--------+--------+… 这次 MySQL 调整了执行顺序,先全表扫描 a_info 表,再对表 a 进行 eq_ref 查找,因为 a 表 id 还是主键。删除 a 的主键:alter table a drop primary key; 现在 a 也没有索引了: mysql> explain select * from a join a_info using(id);
…+--------+------+…
…| table | type |…
…+--------+------+…
…| a | ALL |…
…| a_info | ALL |…
…+--------+------+… 现在两个表都使用全表扫描了。
建表及插入数据: create table a(id int primary key); create table a_info(id int, title char(1), key(id)); insert into a value(1),(2); insert into a_info value(1, 'a'),(2, 'b'); 现在 a_info 表 id 列变为普通索引(非唯一性索引): mysql> explain select * from a join a_info using(id) where a.id=1;
…+--------+-------+…
…| table | type |…
…+--------+-------+…
…| a | const |…
…| a_info | ref |…
…+--------+-------+… a_info 表 type 变为 ref 类型了。所以,唯一性索引才会出现 eq_ref (非唯一性索引会出现 ref ),因为唯一,所以最多只返回一条记录,找到后无需继续查找,因此比 ref 更快。
const 被称为"常量",这个词不好理解,不过出现 const 的话就表示发生下面两种情况:在整个查询过程中这个表最多只会有一条匹配的行,比如主键 id=1 就肯定只有一行,只需读取一次表数据便能取得所需的结果,且表数据在分解执行计划时读取。返回值直接放在 select 语句中,类似 select 1 AS f .可以通过 extended 选择查看内部过程:
建表及插入数据: create table a(id int primary key, c1 char(20) not null, c2 text not null, c3 text not null); insert into a values(1, 'asdfasdf', 'asdfasdf', 'asdfasdf'), (2, 'asdfasdf', 'asdfasdf', 'asdfasdf'); mysql> explain extended select * from a where id=1\G
…
type: const
possible_keys: PRIMARY
key: PRIMARY
… 用 show warnings 查看 MySQL 是如何优化的: mysql> show warnings\G
…
Message: select '1' AS `id`,'asdfasdf' AS `c1`,'asdfasdf' AS `c2`,'asdfasdf' AS
`c3` from `test`.`a` where 1 查询返回的结果为: mysql> select * from a where id=1;
+----+----------+----------+----------+
| id | c1 | c2 | c3 |
+----+----------+----------+----------+
| 1 | asdfasdf | asdfasdf | asdfasdf |
+----+----------+----------+----------+ 可以看出,返回结果中的字段值都以"值 AS 字段名"的形式直接出现在优化后的 select 语句中。修改一下查询: mysql> explain select * from a where id in(1,2)\G
…
type: range … 当返回结果超过 1 条时, type 便不再为 const 了。重新建表及插入数据: create table a (id int not null); insert into a value(1),(2),(3); mysql> explain select * from a where id=1\G
…
type: ALL 目前表中只有一条 id=1 的记录,但 type 已为 ALL ,因为只有唯一性索引才能保证表中最多只有一条记录,只有这样 type 才有可能为 const .为 id 加普通索引后, type 变为 ref ,改为加唯一或主键索引后, type 便变为 const 了。

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The MySQL learning path includes basic knowledge, core concepts, usage examples, and optimization techniques. 1) Understand basic concepts such as tables, rows, columns, and SQL queries. 2) Learn the definition, working principles and advantages of MySQL. 3) Master basic CRUD operations and advanced usage, such as indexes and stored procedures. 4) Familiar with common error debugging and performance optimization suggestions, such as rational use of indexes and optimization queries. Through these steps, you will have a full grasp of the use and optimization of MySQL.

MySQL's real-world applications include basic database design and complex query optimization. 1) Basic usage: used to store and manage user data, such as inserting, querying, updating and deleting user information. 2) Advanced usage: Handle complex business logic, such as order and inventory management of e-commerce platforms. 3) Performance optimization: Improve performance by rationally using indexes, partition tables and query caches.

SQL commands in MySQL can be divided into categories such as DDL, DML, DQL, DCL, etc., and are used to create, modify, delete databases and tables, insert, update, delete data, and perform complex query operations. 1. Basic usage includes CREATETABLE creation table, INSERTINTO insert data, and SELECT query data. 2. Advanced usage involves JOIN for table joins, subqueries and GROUPBY for data aggregation. 3. Common errors such as syntax errors, data type mismatch and permission problems can be debugged through syntax checking, data type conversion and permission management. 4. Performance optimization suggestions include using indexes, avoiding full table scanning, optimizing JOIN operations and using transactions to ensure data consistency.

InnoDB achieves atomicity through undolog, consistency and isolation through locking mechanism and MVCC, and persistence through redolog. 1) Atomicity: Use undolog to record the original data to ensure that the transaction can be rolled back. 2) Consistency: Ensure the data consistency through row-level locking and MVCC. 3) Isolation: Supports multiple isolation levels, and REPEATABLEREAD is used by default. 4) Persistence: Use redolog to record modifications to ensure that data is saved for a long time.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft