


Sharing of numpy function tips and examples to improve work efficiency
Introduction:
In the fields of data processing and scientific computing, it is very common to use Python's numpy library . Numpy provides a series of powerful functions and tools that can easily perform large-scale data operations and calculations. This article will introduce some numpy function techniques to improve work efficiency and provide specific code examples.
1. Vectorization operation
The vectorization operation of numpy is one of its most powerful functions. Through vectorization operations, you can avoid using for loops to operate on each element, thus greatly improving the operation speed.
Sample code 1: Calculate the sum of rows and columns of a matrix
import numpy as np m = np.random.rand(1000, 1000) # 使用for循环 row_sum = np.zeros(1000) col_sum = np.zeros(1000) for i in range(1000): for j in range(1000): row_sum[i] += m[i][j] col_sum[j] += m[i][j] # 使用矢量化操作 row_sum = np.sum(m, axis=1) col_sum = np.sum(m, axis=0)
Sample code 2: Calculate the weighted average of two arrays
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) weights = np.array([0.2, 0.3, 0.5]) # 使用for循环 result = 0 for i in range(3): result += a[i] * b[i] * weights[i] # 使用矢量化操作 result = np.dot(np.multiply(a, b), weights)
2. Broadcast
Broadcasting is a function in numpy that makes operations between arrays of different dimensions very convenient. By broadcasting, we can only operate on an array without explicit dimension matching.
Sample code 3: Calculate the mean square error of the array
import numpy as np a = np.array([1, 2, 3]) mean = np.mean(a) var = np.sqrt(np.mean((a - mean) ** 2))
Sample code 4: Subtract the mean of the corresponding row from each row of the matrix
import numpy as np m = np.random.rand(1000, 1000) mean = np.mean(m, axis=1) m -= mean[:, np.newaxis]
3. Slicing and indexing skills
numpy provides a wealth of slicing and indexing techniques, which can easily intercept and filter arrays.
Sample code 5: Randomly extract some elements from the array
import numpy as np a = np.arange(100) np.random.shuffle(a) selected = a[:10]
Sample code 6: Filter the elements in the array that meet the conditions
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) selected = a[a > 3]
4. General functions and aggregate functions
numpy provides a large number of general functions and aggregate functions, which can easily perform various mathematical and statistical operations on arrays.
Sample code 7: Take the absolute value of the elements of the array
import numpy as np a = np.array([-1, -2, -3, 4, 5, 6]) abs_a = np.abs(a)
Sample code 8: Calculate the sum, average and maximum value of the array
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) sum_a = np.sum(a) mean_a = np.mean(a) max_a = np.max(a)
Summary:
This article introduces some numpy function tips to improve work efficiency and provides specific code examples. Through vectorization operations, broadcasting, slicing and indexing techniques, and the use of general and aggregate functions, we can use numpy more efficiently in data processing and scientific computing. I hope this article will be helpful to everyone’s work!
The above is the detailed content of Share numpy function tips and examples to improve work efficiency. For more information, please follow other related articles on the PHP Chinese website!

您是否知道使用模板可以提高记笔记的速度以及捕捉重要想法的效率?OneNote有一套现成的模板供您使用。最好的部分是您还可以根据需要设计模板。无论您是学生、企业战士还是从事创造性工作的自由职业者。OneNote模板可用于以适合您风格的结构和格式记录重要笔记。模板可以是记笔记过程的大纲。业余爱好者只是做笔记,专业人士则在模板的帮助下通过结构良好的笔记做笔记并从中汲取联系。让我们看看如何在OneNote中使用模板。使用默认OneNote模板第1步:按键盘上的Windows+R。键入Oneno

提升工作效率的必备工具:五大优秀Kafka可视化工具推荐引言:在现代信息技术发展迅猛的时代,大数据处理成为了各个行业提升效率、创造价值的必备利器。Kafka作为一个高吞吐量的分布式消息系统,被广泛应用于大数据场景中,提供了可靠的消息传递和处理能力。然而,Kafka的管理与监控却是一个相对繁琐的任务,这就需要使用一些优秀的可视化工具来管理和监控Kaf

numpy函数有np.sin(), np.cos(), np.tan()、np.exp()、np.log(), np.log10(), np.log2()、np.mean(), np.median(), np.var(), np.std()、np.max(), np.min()、np.percentile()等等。

numpy函数有np.array()、np.zeros()、np.ones()、np.empty()、np.arange()、np.linspace()、np.shape()、np.reshape()、np.resize()、np.concatenate()、np.split()、np.add()、np.subtract()、np.multiply()等等。

最近看到一个关于工作效率的问题,这里系统整理下自己总结的一些经验。有一个跟工作效率有点像的词汇:生产效率。生产效率指的是单位时间内的有效产出,想要生产效率高,要么做事的“质”和“量”更高,要么缩短所花费的时间。

如何优化您的iPhone相机设置以获得精美的照片您是否希望将您的iPhone摄影游戏提升到专业高度?无论你是使用最新的iPhone15Pro还是利用旧型号的强大功能,了解如何优化相机设置都可以让你的照片从好到令人叹为观止。在迷宫般的相机设置中导航首先,了解相机设置至关重要。对于iPhone用户,尤其是使用iPhone15Pro的用户,选择正确的格式和分辨率是您拍摄照片的第一步,这些照片不仅具有视觉吸引力,而且具有存储效率。选择高效设置,以防止您的高质量图像占用设备上的空间。掌握照片捕捉和格式选择

numpy是一个用于进行数值计算和数据分析的Python库,提供了许多强大的函数和工具。常见的numpy函数的介绍:1、np.array(),从列表或元组创建一个数组;2、np.zeros(),创建一个全为0的数组;3、np.ones(),创建一个全为1的数组;4、np.arange(),创建一个等差数列数组;5、np.shape(),返回数组的形状等等。

numpy求矩阵的逆的步骤:1、导入numpy库,import numpy as np;2、创建一个方阵矩阵,A = np.array([[1, 2], [3, 4]]);3、使用np.linalg.inv()函数求矩阵的逆,A_inv = np.linalg.inv(A);4、输出结果,print(A_inv)。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 English version
Recommended: Win version, supports code prompts!
