search
HomeTechnology peripheralsAIKai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Leading the two authoritative lists in Chinese and English, Kai-Fu Zero handed over the multi-modal large model answer sheet!

It is less than three months since the release of its first open source large models Yi-34B and Yi-6B.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

The model is called Yi Vision Language (Yi-VL), and it is now officially open source to the world.

belong to the Yi series and also have two versions:

Yi-VL-34B and Yi-VL-6B.

Let’s take a look at two examples first to experience Yi-VL’s performance in diverse scenarios such as graphic and text dialogues:

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Yi-VL Each picture was analyzed in detail, not only explaining the content on the sign, but even taking care of the "ceiling".

In Chinese, Yi-VL can also express clearly and methodically accurately:

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

In addition, the official test results were also given.

Yi-VL-34B has an accuracy of 41.6% on the English data set MMMU, second only to GPT-4V with an accuracy of 55.7%, surpassing a series of multi-modal large models.

On the Chinese data set CMMMU, the accuracy of Yi-VL-34B is 36.5%, which is ahead of the current cutting-edge open source multi-modal models.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

#What does Yi-VL look like?

Yi-VL is developed based on the Yi language model. You can see the powerful text understanding capabilities based on the Yi language model. You only need to align the pictures to get a good multi-modal visual language model - this is also One of the core highlights of the Yi-VL model.

In terms of architecture design, the Yi-VL model is based on the open source LLaVA architecture and contains three main modules:

  • Vision Transformer (ViT for short) For image encoding, the open source OpenClip ViT-H/14 model is used to initialize the trainable parameters, and by learning to extract features from large-scale "image-text" pairs, the model has the ability to process and understand images.
  • The Projection module brings the ability to spatially align image features and text features to the model. This module consists of a multilayer perceptron (Multilayer Perceptron, referred to as MLP) that contains layer normalizations. This design allows the model to more effectively fuse and process visual and text information, improving the accuracy of multi-modal understanding and generation.
  • The introduction of Yi-34B-Chat and Yi-6B-Chat large language models provides Yi-VL with powerful language understanding and generation capabilities. This part of the model uses advanced natural language processing technology to help Yi-VL deeply understand complex language structures and generate coherent and relevant text output.
Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.
△Caption: Yi-VL model architecture design and training method process overview

On

training method, Yi -The training process of the VL model is divided into three stages, aiming to comprehensively improve the model's visual and language processing capabilities.

In the first stage, the ViT and Projection modules are trained using 100 million "image-text" paired data sets.

At this stage, the image resolution is set to 224x224 to enhance ViT’s knowledge acquisition capabilities in specific architectures while achieving efficient alignment with large language models.

In the second stage, the image resolution of ViT is increased to 448x448, making the model better at recognizing complex visual details. About 25 million "image-text" pairs are used in this stage.

In the third stage, the parameters of the entire model are opened for training, with the goal of improving the model's performance in multi-modal chat interaction. The training data covers diverse data sources, with a total of approximately 1 million "image-text" pairs, ensuring the breadth and balance of the data.

The zero-yiwu technical team also verified that it can quickly train efficient images based on the Yi language model's powerful language understanding and generation capabilities using other multi-modal training methods such as BLIP, Flamingo, EVA, etc. A multimodal graphic-text model for understanding and smoothing graphic-text dialogue.

Yi series models can be used as base language models for multi-modal models, providing a new option for the open source community. At the same time, the zero-one-things multi-modal team is exploring multi-modal pre-training from scratch to approach and surpass GPT-4V faster and reach the world's first echelon level.

Currently, the Yi-VL model has been opened to the public on platforms such as Hugging Face and ModelScope. Users can personally experience the performance of this model in diverse scenarios such as graphic and text dialogues.

Beyond a series of large multi-modal models

In the new multi-modal benchmark test MMMU, both versions Yi-VL-34B and Yi-VL-6B performed well.

MMMU (full name Massive Multi-discipline Multi-modal Understanding & Reasoning Massive Multi-discipline Multi-modal Understanding and Reasoning) The data set contains 11,500 subjects from six core disciplines(Art & Design, Business, Science, Health & Medicine, Humanities & Social Sciences, and Technology & Engineering) questions involving highly heterogeneous image types and intertwined textual image information pose challenges to the model's advanced perception and reasoning capabilities met extremely high demands.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Yi-VL-34B successfully surpassed a series of multi-modal large models with an accuracy of 41.6% on this test set, second only to GPT-4V (55.7%), showing strong ability to understand and apply interdisciplinary knowledge.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Similarly, on the CMMMU data set created for the Chinese scene, the Yi-VL model shows the unique advantage of "understanding Chinese people better".

CMMMU contains about 12,000 Chinese multi-modal questions derived from university exams, tests and textbooks.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Among them, GPT-4V has an accuracy of 43.7% on this test set, followed by Yi-VL-34B with an accuracy of 36.5%, leading the The current cutting-edge open source multimodal model.

Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.

Project address:
[1]https://huggingface.co/01-ai

[2] https://www.modelscope.cn/organization/01ai

The above is the detailed content of Kai-Fu Lee participated in Zero One Wish, which released a world-class open source multi-modal large model.. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Let's Dance: Structured Movement To Fine-Tune Our Human Neural NetsLet's Dance: Structured Movement To Fine-Tune Our Human Neural NetsApr 27, 2025 am 11:09 AM

Scientists have extensively studied human and simpler neural networks (like those in C. elegans) to understand their functionality. However, a crucial question arises: how do we adapt our own neural networks to work effectively alongside novel AI s

New Google Leak Reveals Subscription Changes For Gemini AINew Google Leak Reveals Subscription Changes For Gemini AIApr 27, 2025 am 11:08 AM

Google's Gemini Advanced: New Subscription Tiers on the Horizon Currently, accessing Gemini Advanced requires a $19.99/month Google One AI Premium plan. However, an Android Authority report hints at upcoming changes. Code within the latest Google P

How Data Analytics Acceleration Is Solving AI's Hidden BottleneckHow Data Analytics Acceleration Is Solving AI's Hidden BottleneckApr 27, 2025 am 11:07 AM

Despite the hype surrounding advanced AI capabilities, a significant challenge lurks within enterprise AI deployments: data processing bottlenecks. While CEOs celebrate AI advancements, engineers grapple with slow query times, overloaded pipelines, a

MarkItDown MCP Can Convert Any Document into Markdowns!MarkItDown MCP Can Convert Any Document into Markdowns!Apr 27, 2025 am 09:47 AM

Handling documents is no longer just about opening files in your AI projects, it’s about transforming chaos into clarity. Docs such as PDFs, PowerPoints, and Word flood our workflows in every shape and size. Retrieving structured

How to Use Google ADK for Building Agents? - Analytics VidhyaHow to Use Google ADK for Building Agents? - Analytics VidhyaApr 27, 2025 am 09:42 AM

Harness the power of Google's Agent Development Kit (ADK) to create intelligent agents with real-world capabilities! This tutorial guides you through building conversational agents using ADK, supporting various language models like Gemini and GPT. W

Use of SLM over LLM for Effective Problem Solving - Analytics VidhyaUse of SLM over LLM for Effective Problem Solving - Analytics VidhyaApr 27, 2025 am 09:27 AM

summary: Small Language Model (SLM) is designed for efficiency. They are better than the Large Language Model (LLM) in resource-deficient, real-time and privacy-sensitive environments. Best for focus-based tasks, especially where domain specificity, controllability, and interpretability are more important than general knowledge or creativity. SLMs are not a replacement for LLMs, but they are ideal when precision, speed and cost-effectiveness are critical. Technology helps us achieve more with fewer resources. It has always been a promoter, not a driver. From the steam engine era to the Internet bubble era, the power of technology lies in the extent to which it helps us solve problems. Artificial intelligence (AI) and more recently generative AI are no exception

How to Use Google Gemini Models for Computer Vision Tasks? - Analytics VidhyaHow to Use Google Gemini Models for Computer Vision Tasks? - Analytics VidhyaApr 27, 2025 am 09:26 AM

Harness the Power of Google Gemini for Computer Vision: A Comprehensive Guide Google Gemini, a leading AI chatbot, extends its capabilities beyond conversation to encompass powerful computer vision functionalities. This guide details how to utilize

Gemini 2.0 Flash vs o4-mini: Can Google Do Better Than OpenAI?Gemini 2.0 Flash vs o4-mini: Can Google Do Better Than OpenAI?Apr 27, 2025 am 09:20 AM

The AI landscape of 2025 is electrifying with the arrival of Google's Gemini 2.0 Flash and OpenAI's o4-mini. These cutting-edge models, launched weeks apart, boast comparable advanced features and impressive benchmark scores. This in-depth compariso

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function