Why Transformer replaced CNN in computer vision
Transformer and CNN are commonly used neural network models in deep learning, and their design ideas and application scenarios are different. Transformer is suitable for sequence data tasks such as natural language processing, while CNN is mainly used for spatial data tasks such as image processing. They have unique advantages in different scenarios and tasks.
Transformer is a neural network model used to process sequence data. It was originally proposed to solve machine translation problems. Its core is the self-attention mechanism, which captures long-distance dependencies by calculating the relationship between various positions in the input sequence, thereby better processing sequence data. Transformer model consists of encoder and decoder. The encoder uses a multi-head attention mechanism to model the input sequence and can consider information at different locations simultaneously. This attention mechanism allows the model to focus on different parts of the input sequence to better extract features. The decoder generates the output sequence through the self-attention mechanism and the encoder-decoder attention mechanism. The self-attention mechanism helps the decoder focus on information at different positions in the output sequence, and the encoder-decoder attention mechanism helps the decoder consider relevant parts of the input sequence when generating output at each position. Compared with traditional CNN models, Transformer has some advantages when processing sequence data. First, it has better flexibility and can handle sequences of arbitrary length, while CNN models usually require fixed-length inputs. Secondly, Transformer has better interpretability and can understand the focus of the model when processing sequences by visualizing the attention weights. In addition, Transformer models have achieved good performance in many tasks, surpassing traditional CNN models. In short, Transformer is a powerful model for processing sequence data. Through the self-attention mechanism and encoder-decoder structure, it can better capture the relationship of sequence data and has better flexibility and interpretability. It has been Demonstrates excellent performance in multiple tasks.
CNN is a neural network model used to process spatial data, such as images and videos. Its core includes convolutional layers, pooling layers and fully connected layers, which complete tasks such as classification and recognition by extracting local features and abstracting global features. CNN performs well in processing spatial data, has translation invariance and local awareness, and has fast calculation speed. However, a major limitation of CNN is that it can only handle fixed-size input data and is relatively weak in modeling long-distance dependencies.
Although Transformer and CNN are two different neural network models, they can be combined with each other in certain tasks. For example, in the image generation task, CNN can be used to extract features from the original image, and then Transformer can be used to process and generate the extracted features. In natural language processing tasks, Transformers can be used to model input sequences, and then CNNs can be used for tasks such as classifying the resulting features or generating text summaries. This combination can take full advantage of the advantages of both models. CNN has good feature extraction capabilities in the image field, while Transformer performs well in sequence modeling. Therefore, by using them together, you can achieve better performance in their respective fields.
Transformer replaces CNN in the field of computer vision
The reasons why Transformer gradually replaces CNN in computer vision are as follows:
1. Further optimize long-distance dependency modeling: traditional CNN models have some limitations in dealing with long-distance dependency problems because they can only process input data through local windows. In contrast, the Transformer model can better capture long-distance dependencies through the self-attention mechanism, and therefore performs better when processing sequence data. In order to further improve performance, the Transformer model can be improved by adjusting the parameters of the attention mechanism or introducing a more complex attention mechanism. 2. Long-distance dependency modeling applied to other fields: In addition to sequence data, long-distance dependence problems also present challenges in other fields. For example, in computer vision tasks, dealing with long-range pixel dependencies is also an important issue. You can try to apply the Transformer model to these fields, through the self-attention machine
The traditional CNN model requires manual design of the network structure, while the Transformer model can adapt to different tasks through simple modifications, such as adding or removing layers or heads. number. This makes the Transformer more flexible when handling a variety of vision tasks.
The attention mechanism of the Transformer model has visual characteristics, making it easier to explain the model's attention to the input data. This enables us to understand the model's decision-making process more intuitively in certain tasks and improves the interpretability of the model.
4. Better performance: In some tasks, the Transformer model has surpassed the traditional CNN model, such as in image generation and image classification tasks.
5. Better generalization ability: Since the Transformer model performs better when processing sequence data, it can better handle input data of different lengths and structures, thereby improving the model's generalization ability.
The above is the detailed content of Why Transformer replaced CNN in computer vision. For more information, please follow other related articles on the PHP Chinese website!

Large language models (LLMs) have surged in popularity, with the tool-calling feature dramatically expanding their capabilities beyond simple text generation. Now, LLMs can handle complex automation tasks such as dynamic UI creation and autonomous a

Can a video game ease anxiety, build focus, or support a child with ADHD? As healthcare challenges surge globally — especially among youth — innovators are turning to an unlikely tool: video games. Now one of the world’s largest entertainment indus

“History has shown that while technological progress drives economic growth, it does not on its own ensure equitable income distribution or promote inclusive human development,” writes Rebeca Grynspan, Secretary-General of UNCTAD, in the preamble.

Easy-peasy, use generative AI as your negotiation tutor and sparring partner. Let’s talk about it. This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI, including identifying and explaining

The TED2025 Conference, held in Vancouver, wrapped its 36th edition yesterday, April 11. It featured 80 speakers from more than 60 countries, including Sam Altman, Eric Schmidt, and Palmer Luckey. TED’s theme, “humanity reimagined,” was tailor made

Joseph Stiglitz is renowned economist and recipient of the Nobel Prize in Economics in 2001. Stiglitz posits that AI can worsen existing inequalities and consolidated power in the hands of a few dominant corporations, ultimately undermining economic

Graph Databases: Revolutionizing Data Management Through Relationships As data expands and its characteristics evolve across various fields, graph databases are emerging as transformative solutions for managing interconnected data. Unlike traditional

Large Language Model (LLM) Routing: Optimizing Performance Through Intelligent Task Distribution The rapidly evolving landscape of LLMs presents a diverse range of models, each with unique strengths and weaknesses. Some excel at creative content gen


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.