search
HomeTechnology peripheralsAIOptimized Proximal Policy Algorithm (PPO)

Optimized Proximal Policy Algorithm (PPO)

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed to solve the problems of unstable training and low sample efficiency in deep reinforcement learning. The PPO algorithm is based on policy gradient and trains the agent by optimizing the policy to maximize long-term returns. Compared with other algorithms, PPO has the advantages of simplicity, efficiency, and stability, so it is widely used in academia and industry. PPO improves the training process through two key concepts: proximal policy optimization and shearing the objective function. Proximal policy optimization maintains training stability by limiting the size of policy updates to ensure that each update is within an acceptable range. The shear objective function is the core idea of ​​the PPO algorithm. When updating the policy, it uses the shear objective function to constrain the magnitude of the policy update to avoid excessive updates that lead to unstable training. The PPO algorithm shows good performance in practice

In the PPO algorithm, the strategy is represented by a neural network. Neural networks accept the current state as input and output a probability value for each available action. At each time step, the agent chooses an action based on the probability distribution output by the policy network. The agent then performs the action and observes the next state and reward signal. This process will be repeated until the mission is completed. By repeating this process, the agent can learn how to choose the optimal action based on the current state to maximize the cumulative reward. The PPO algorithm balances the exploration and utilization of strategies by optimizing the step size and update amplitude of strategy updates, thereby improving the stability and performance of the algorithm.

The core idea of ​​the PPO algorithm is to use the proximal policy optimization method for policy optimization to avoid the problem of performance degradation caused by too aggressive policy updates. Specifically, the PPO algorithm adopts a shear function to limit the difference between the new policy and the old policy within a given range. This shear function can be linear, quadratic or exponential, etc. By using the shear function, the PPO algorithm can balance the intensity of policy updates, thereby improving the stability and convergence speed of the algorithm. This method of proximal policy optimization enables the PPO algorithm to show good performance and robustness in reinforcement learning tasks.

The core of the PPO (Proximal Policy Optimization) algorithm is to improve the adaptability of the policy in the current environment by updating the parameters of the policy network. Specifically, the PPO algorithm updates the parameters of the policy network by maximizing the PPO objective function. This objective function consists of two parts: one is the optimization goal of the strategy, which is to maximize long-term returns; the other is a constraint term used to limit the difference between the updated strategy and the original strategy. In this way, the PPO algorithm can effectively update the parameters of the policy network and improve the performance of the policy while ensuring stability.

In the PPO algorithm, in order to constrain the difference between the updated policy and the original policy, we use a technique called clipping. Specifically, we compare the updated policy with the original policy and limit the difference between them to no more than a small threshold. The purpose of this pruning technology is to ensure that the updated policy will not be too far away from the original policy, thereby avoiding excessive updates during the training process, which will lead to training instability. Through clipping techniques, we are able to balance the magnitude of updates and ensure training stability and convergence.

The PPO algorithm utilizes empirical data by sampling multiple trajectories, thereby improving sample efficiency. During training, multiple trajectories are sampled and then used to estimate the long-term reward and gradient of the policy. This sampling technique can reduce the variance during training, thereby improving the stability and efficiency of training.

The optimization goal of the PPO algorithm is to maximize the expected return, where return refers to the cumulative reward obtained after executing a series of actions starting from the current state. The PPO algorithm uses a method called "importance sampling" to estimate the policy gradient, that is, for the current state and action, compare the probability ratio of the current policy and the old policy, use it as a weight, multiply it by the reward value, and finally get the policy gradient.

In short, the PPO algorithm is an efficient, stable, and easy-to-implement strategy optimization algorithm suitable for solving continuous control problems. It uses proximal policy optimization methods to control the magnitude of policy updates, and uses importance sampling and value function clipping methods to estimate policy gradients. The combination of these techniques makes the PPO algorithm perform well in a variety of environments, making it one of the most popular reinforcement learning algorithms currently.

The above is the detailed content of Optimized Proximal Policy Algorithm (PPO). For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
Most Used 10 Power BI Charts - Analytics VidhyaMost Used 10 Power BI Charts - Analytics VidhyaApr 16, 2025 pm 12:05 PM

Harnessing the Power of Data Visualization with Microsoft Power BI Charts In today's data-driven world, effectively communicating complex information to non-technical audiences is crucial. Data visualization bridges this gap, transforming raw data i

Expert Systems in AIExpert Systems in AIApr 16, 2025 pm 12:00 PM

Expert Systems: A Deep Dive into AI's Decision-Making Power Imagine having access to expert advice on anything, from medical diagnoses to financial planning. That's the power of expert systems in artificial intelligence. These systems mimic the pro

Three Of The Best Vibe Coders Break Down This AI Revolution In CodeThree Of The Best Vibe Coders Break Down This AI Revolution In CodeApr 16, 2025 am 11:58 AM

First of all, it’s apparent that this is happening quickly. Various companies are talking about the proportions of their code that are currently written by AI, and these are increasing at a rapid clip. There’s a lot of job displacement already around

Runway AI's Gen-4: How Can AI Montage Go Beyond AbsurdityRunway AI's Gen-4: How Can AI Montage Go Beyond AbsurdityApr 16, 2025 am 11:45 AM

The film industry, alongside all creative sectors, from digital marketing to social media, stands at a technological crossroad. As artificial intelligence begins to reshape every aspect of visual storytelling and change the landscape of entertainment

How to Enroll for 5 Days ISRO AI Free Courses? - Analytics VidhyaHow to Enroll for 5 Days ISRO AI Free Courses? - Analytics VidhyaApr 16, 2025 am 11:43 AM

ISRO's Free AI/ML Online Course: A Gateway to Geospatial Technology Innovation The Indian Space Research Organisation (ISRO), through its Indian Institute of Remote Sensing (IIRS), is offering a fantastic opportunity for students and professionals to

Local Search Algorithms in AILocal Search Algorithms in AIApr 16, 2025 am 11:40 AM

Local Search Algorithms: A Comprehensive Guide Planning a large-scale event requires efficient workload distribution. When traditional approaches fail, local search algorithms offer a powerful solution. This article explores hill climbing and simul

OpenAI Shifts Focus With GPT-4.1, Prioritizes Coding And Cost EfficiencyOpenAI Shifts Focus With GPT-4.1, Prioritizes Coding And Cost EfficiencyApr 16, 2025 am 11:37 AM

The release includes three distinct models, GPT-4.1, GPT-4.1 mini and GPT-4.1 nano, signaling a move toward task-specific optimizations within the large language model landscape. These models are not immediately replacing user-facing interfaces like

The Prompt: ChatGPT Generates Fake PassportsThe Prompt: ChatGPT Generates Fake PassportsApr 16, 2025 am 11:35 AM

Chip giant Nvidia said on Monday it will start manufacturing AI supercomputers— machines that can process copious amounts of data and run complex algorithms— entirely within the U.S. for the first time. The announcement comes after President Trump si

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor