


On January 22, Horizon will open source the Sparse4D series of pure visual autonomous driving algorithms to encourage more developers in the industry to participate in the exploration of cutting-edge technology directions such as end-to-end autonomous driving and sparse perception. Currently, the Sparse4D algorithm has been launched on the GitHub platform. Developers can follow the Horizon GitHub official account "Horizon Robotics" to obtain the source code.
Sparse4D is a series of algorithms towards long-term sparse 3D target detection, which belongs to the category of temporal multi-view fusion sensing technology. Facing the industry development trend of sparse perception, Sparse4D has built a pure sparse fusion perception framework to make the perception algorithm more efficient and precise, and to make the perception system simpler. Compared with the dense BEV algorithm, Sparse4D reduces the computational complexity, breaks the limitation of computing power on the perception range, and surpasses the dense BEV algorithm in terms of perception effect and reasoning speed. In both the nuScenes pure visual 3D detection and 3D tracking lists, Sparse4D ranked first, becoming SOTA, ahead of the latest methods including SOLOFusion, BEVFormer v2 and StreamPETR.
Sparse4D algorithm architecture
##After three versions of iterations, the Horizon Sparse4D team It has successfully overcome technical problems such as improving the performance of sparse algorithms, reducing the computational complexity of timing fusion, and achieving end-to-end target tracking. Recently, they published a paper titled "Sparse4D v3: Advancing End-to-End 3D Detection and Tracking", detailing their research results. By using Horizon business data for performance verification, the Sparse4D team has successfully deployed on the Horizon Journey 5 computing solution. In the future, according to plans, Sparse4D technology will be used in Horizon’s next generation products. The achievement of this result will further promote the development of Horizon.
Dr. Yu Yinan, Vice President of Horizon and President of the Software Platform Product Line, pointed out that the current industry has entered the era of end-to-end sensing, which can be completed with only one network the entire perception task. He believes that the Sparse4D series of algorithms have improved the performance of sparse algorithms to a new level and successfully achieved end-to-end multi-target tracking. This is of great significance for both sparse perception and end-to-end autonomous driving, and can be said to be a milestone breakthrough. Horizon chose to open source Sparse4D to the entire industry, hoping to make progress together with outstanding developers in the industry.
Comparison between traditional perception system and end-to-end perception system
Another example of Horizon actively participating in the ecological construction of open source software for intelligent driving is the open source Sparse4D series of algorithms. This algorithm has huge application potential in the implementation of pure visual, end-to-end autonomous driving. In addition, Horizon has also open sourced leading technologies such as VAD algorithm and MapTR algorithm, which will further promote the development of the industry. It is expected that the Sparse4D algorithm will receive widespread attention and use by industry developers. Horizon's continued efforts will accelerate the industry's development process.
Horizon adheres to the concept of transforming independently innovative technologies, breakthrough products and solutions into the commercial value of ecological partners in the smart car industry, and contributes to the development of the industry. Energize. Through close collaboration, open integration, and cooperative innovation with all parties in the industry, Horizon is committed to becoming the source of living water for the smart automobile industry ecology and providing it with sustainable development momentum. Horizon fully understands that the mass production of autonomous driving is an important breakthrough, so we will continue to embrace open source and accelerate the implementation and mass production of cutting-edge technologies. We firmly believe that the future of win-win cooperation with the industry will be broader, and Horizon will continue to work hard to contribute to the prosperity of the smart car industry.
The above is the detailed content of Horizon releases open-source Sparse4D algorithm, pushing one step closer to end-to-end autonomous driving. For more information, please follow other related articles on the PHP Chinese website!

arXiv论文“Insertion of real agents behaviors in CARLA autonomous driving simulator“,22年6月,西班牙。由于需要快速prototyping和广泛测试,仿真在自动驾驶中的作用变得越来越重要。基于物理的模拟具有多种优势和益处,成本合理,同时消除了prototyping、驾驶员和弱势道路使用者(VRU)的风险。然而,主要有两个局限性。首先,众所周知的现实差距是指现实和模拟之间的差异,阻碍模拟自主驾驶体验去实现有效的现实世界

特斯拉是一个典型的AI公司,过去一年训练了75000个神经网络,意味着每8分钟就要出一个新的模型,共有281个模型用到了特斯拉的车上。接下来我们分几个方面来解读特斯拉FSD的算法和模型进展。01 感知 Occupancy Network特斯拉今年在感知方面的一个重点技术是Occupancy Network (占据网络)。研究机器人技术的同学肯定对occupancy grid不会陌生,occupancy表示空间中每个3D体素(voxel)是否被占据,可以是0/1二元表示,也可以是[0, 1]之间的

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

gPTP定义的五条报文中,Sync和Follow_UP为一组报文,周期发送,主要用来测量时钟偏差。 01 同步方案激光雷达与GPS时间同步主要有三种方案,即PPS+GPRMC、PTP、gPTPPPS+GPRMCGNSS输出两条信息,一条是时间周期为1s的同步脉冲信号PPS,脉冲宽度5ms~100ms;一条是通过标准串口输出GPRMC标准的时间同步报文。同步脉冲前沿时刻与GPRMC报文的发送在同一时刻,误差为ns级别,误差可以忽略。GPRMC是一条包含UTC时间(精确到秒),经纬度定位数据的标准格

2 月 16 日消息,特斯拉的新自动驾驶计算机,即硬件 4.0(HW4)已经泄露,该公司似乎已经在制造一些带有新系统的汽车。我们已经知道,特斯拉准备升级其自动驾驶硬件已有一段时间了。特斯拉此前向联邦通信委员会申请在其车辆上增加一个新的雷达,并称计划在 1 月份开始销售,新的雷达将意味着特斯拉计划更新其 Autopilot 和 FSD 的传感器套件。硬件变化对特斯拉车主来说是一种压力,因为该汽车制造商一直承诺,其自 2016 年以来制造的所有车辆都具备通过软件更新实现自动驾驶所需的所有硬件。事实证

arXiv论文“Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline“, 2022年6月,上海AI实验室和上海交大。当前的端到端自主驾驶方法要么基于规划轨迹运行控制器,要么直接执行控制预测,这跨越了两个研究领域。鉴于二者之间潜在的互利,本文主动探索两个的结合,称为TCP (Trajectory-guided Control Prediction)。具

定位在自动驾驶中占据着不可替代的地位,而且未来有着可期的发展。目前自动驾驶中的定位都是依赖RTK配合高精地图,这给自动驾驶的落地增加了不少成本与难度。试想一下人类开车,并非需要知道自己的全局高精定位及周围的详细环境,有一条全局导航路径并配合车辆在该路径上的位置,也就足够了,而这里牵涉到的,便是SLAM领域的关键技术。什么是SLAMSLAM (Simultaneous Localization and Mapping),也称为CML (Concurrent Mapping and Localiza

什么是交通标志识别系统?汽车安全系统的交通标志识别系统,英文翻译为:Traffic Sign Recognition,简称TSR,是利用前置摄像头结合模式,可以识别常见的交通标志 《 限速、停车、掉头等)。这一功能会提醒驾驶员注意前面的交通标志,以便驾驶员遵守这些标志。TSR 功能降低了驾驶员不遵守停车标志等交通法规的可能,避免了违法左转或者无意的其他交通违法行为,从而提高了安全性。这些系统需要灵活的软件平台来增强探测算法,根据不同地区的交通标志来进行调整。交通标志识别原理交通标志识别又称为TS


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 English version
Recommended: Win version, supports code prompts!
