Home >Backend Development >Python Tutorial >A closer look at pandas sorting: creating an ordered look at your data
Detailed explanation of data analysis tool pandas sorting: Make your data orderly and impressive
Introduction: In the process of data analysis, sorting data is very common and Important operations. Sorting can make the data orderly and visible, making it easier for us to analyze and visualize the data. In Python, the pandas library provides powerful sorting functions. This article will introduce the pandas sorting method in detail and give specific code examples.
1. Basic concepts of sorting
In data analysis, sorting can be performed in ascending or descending order according to a certain column or multiple columns. Among them, ascending order means sorting from small to large, and descending order means sorting from large to small.
2. Pandas sorting method
In pandas, there are two commonly used sorting methods: sort_values() and sort_index().
3. Pandas sorting example
The following uses several examples to demonstrate the sorting function of pandas.
import pandas as pd data = {'姓名': ['Tom', 'Jerry', 'Spike', 'Tyke'], '年龄': [20, 25, 18, 30], '性别': ['男', '男', '女', '男']} df = pd.DataFrame(data) print(df)
The output result is:
姓名 年龄 性别 0 Tom 20 男 1 Jerry 25 男 2 Spike 18 女 3 Tyke 30 男
Now we sort by the age column in descending order Sorting:
df.sort_values(by='年龄', ascending=False, inplace=True) print(df)
The output result is:
姓名 年龄 性别 3 Tyke 30 男 1 Jerry 25 男 0 Tom 20 男 2 Spike 18 女
data = {'姓名': ['Tom', 'Jerry', 'Spike', 'Tyke'], '年龄': [20, 25, 18, 30], '性别': ['男', '男', '女', '男'], '工资': [5000, 6000, 4000, 7000]} df = pd.DataFrame(data) print(df)
The output result is:
姓名 年龄 性别 工资 0 Tom 20 男 5000 1 Jerry 25 男 6000 2 Spike 18 女 4000 3 Tyke 30 男 7000
Now we sort by age and salary in descending order:
df.sort_values(by=['年龄', '工资'], ascending=False, inplace=True) print(df)
The output result is:
姓名 年龄 性别 工资 3 Tyke 30 男 7000 1 Jerry 25 男 6000 0 Tom 20 男 5000 2 Spike 18 女 4000
df.index = ['c', 'a', 'b', 'd'] df.sort_index(axis=0, ascending=True, inplace=True) print(df)
The output result is:
姓名 年龄 性别 工资 a Jerry 25 男 6000 b Spike 18 女 4000 c Tom 20 男 5000 d Tyke 30 男 7000
The above is the basic introduction and examples of pandas sorting. Through the sort_values() and sort_index() methods, we can easily sort the data to make it orderly and impressive. I hope this article can help you better apply pandas for data analysis.
The above is the detailed content of A closer look at pandas sorting: creating an ordered look at your data. For more information, please follow other related articles on the PHP Chinese website!