


Detailed explanation of the F1 score indicator for machine learning evaluation
The accuracy metric measures the number of times the model correctly predicted across the entire data set. However, this metric is only reliable if the data set is class balanced. That is, there are the same number of samples for each category in the dataset. However, real-world datasets are often severely imbalanced, rendering accuracy metrics no longer feasible. To solve this problem, F1 score was introduced as a more comprehensive and complete machine learning evaluation metric. The F1 score combines the precision and recall of the model and can better evaluate the accuracy of the model. Precision refers to how many of the samples predicted as positive by the model are true positives, while recall refers to how many true positives the model can correctly predict. The calculation formula of F1 score is: 2 * (precision rate * recall rate) / (precision rate recall rate). By comprehensively considering precision and recall, the F1 score can more accurately evaluate the performance of the model, especially in
F1 score concept
F1 Scores are closely related to confusion matrices and are used to evaluate metrics such as accuracy, precision, and recall of a classifier. By combining precision and recall, the F1 score provides an assessment of the overall performance of the model.
Precision measures how many of the “positive” predictions the model made were correct.
Recall measures how many positive samples present in the data set are correctly recognized by the model.
Precision and recall provide a trade-off relationship, where improving one metric comes at the expense of the other. Higher accuracy means a stricter classifier that will doubt the actual positive samples in the dataset, thus lowering the recall rate. On the other hand, higher recall requires a relaxed classifier that allows any sample similar to the positive class to pass through, which will misclassify some edge-case negative samples as "positive class" and thus reduce accuracy. Ideally, we would like to maximize the precision and recall metrics to obtain a perfect classifier.
The F1 score combines precision and recall using their harmonic mean, maximizing the F1 score means maximizing precision and recall simultaneously.
How to calculate F1 score?
To understand the calculation of F1 score, you first need to understand the confusion matrix. Above we mentioned that the F1 score is defined in terms of precision and recall. The formula is as follows:
Precision

The F1 score is calculated as the harmonic mean of the precision and recall scores as shown below. It ranges from 0-100%, with a higher F1 score indicating better classifier quality.

To calculate the F1 score for a multi-class dataset, a one-to-one technique is used to calculate the individual scores for each class in the dataset. Take the harmonic mean of class precision and recall values. The net F1 score is then calculated using different averaging techniques.
Macro-average F1 score

Micro-average F1 score is a meaningful indicator for multi-class data distribution. It uses "net" TP, FP and FN values to calculate the indicator.
Net TP refers to the sum of the class TP scores of the dataset, which is calculated by decomposing the confusion matrix into a one-vs-all matrix corresponding to each class.
Sample Weighted F1 Score

The Fβ score is a generic version of the F1 score. It calculates the harmonic mean, just like the F1 score, but prioritizes precision or recall. "β" represents the weight coefficient, which is a hyperparameter set by the user and is always greater than 0.
The above is the detailed content of Detailed explanation of the F1 score indicator for machine learning evaluation. For more information, please follow other related articles on the PHP Chinese website!

The term "AI-ready workforce" is frequently used, but what does it truly mean in the supply chain industry? According to Abe Eshkenazi, CEO of the Association for Supply Chain Management (ASCM), it signifies professionals capable of critic

The decentralized AI revolution is quietly gaining momentum. This Friday in Austin, Texas, the Bittensor Endgame Summit marks a pivotal moment, transitioning decentralized AI (DeAI) from theory to practical application. Unlike the glitzy commercial

Enterprise AI faces data integration challenges The application of enterprise AI faces a major challenge: building systems that can maintain accuracy and practicality by continuously learning business data. NeMo microservices solve this problem by creating what Nvidia describes as "data flywheel", allowing AI systems to remain relevant through continuous exposure to enterprise information and user interaction. This newly launched toolkit contains five key microservices: NeMo Customizer handles fine-tuning of large language models with higher training throughput. NeMo Evaluator provides simplified evaluation of AI models for custom benchmarks. NeMo Guardrails implements security controls to maintain compliance and appropriateness

AI: The Future of Art and Design Artificial intelligence (AI) is changing the field of art and design in unprecedented ways, and its impact is no longer limited to amateurs, but more profoundly affecting professionals. Artwork and design schemes generated by AI are rapidly replacing traditional material images and designers in many transactional design activities such as advertising, social media image generation and web design. However, professional artists and designers also find the practical value of AI. They use AI as an auxiliary tool to explore new aesthetic possibilities, blend different styles, and create novel visual effects. AI helps artists and designers automate repetitive tasks, propose different design elements and provide creative input. AI supports style transfer, which is to apply a style of image

Zoom, initially known for its video conferencing platform, is leading a workplace revolution with its innovative use of agentic AI. A recent conversation with Zoom's CTO, XD Huang, revealed the company's ambitious vision. Defining Agentic AI Huang d

Will AI revolutionize education? This question is prompting serious reflection among educators and stakeholders. The integration of AI into education presents both opportunities and challenges. As Matthew Lynch of The Tech Edvocate notes, universit

The development of scientific research and technology in the United States may face challenges, perhaps due to budget cuts. According to Nature, the number of American scientists applying for overseas jobs increased by 32% from January to March 2025 compared with the same period in 2024. A previous poll showed that 75% of the researchers surveyed were considering searching for jobs in Europe and Canada. Hundreds of NIH and NSF grants have been terminated in the past few months, with NIH’s new grants down by about $2.3 billion this year, a drop of nearly one-third. The leaked budget proposal shows that the Trump administration is considering sharply cutting budgets for scientific institutions, with a possible reduction of up to 50%. The turmoil in the field of basic research has also affected one of the major advantages of the United States: attracting overseas talents. 35

OpenAI unveils the powerful GPT-4.1 series: a family of three advanced language models designed for real-world applications. This significant leap forward offers faster response times, enhanced comprehension, and drastically reduced costs compared t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use
