search
HomeTechnology peripheralsAIUnderstand how deep Q-networks work

Understand how deep Q-networks work

Jan 23, 2024 pm 02:54 PM
machine learningdeep learningAlgorithm concept

Understand how deep Q-networks work

Deep Q Network (DQN) is a reinforcement learning algorithm based on deep learning technology, specifically used to solve discrete action space problems. This algorithm was proposed by DeepMind in 2013 and is widely regarded as an important milestone in the field of deep reinforcement learning.

In the traditional Q-learning algorithm, we use a Q-table to store the value of each action in each state in order to select the optimal action by looking up the Q-table. However, when the state space and action space are very large, the storage and update of the Q table becomes difficult, which is the so-called "curse of dimensionality" problem. To solve this problem, DQN adopts a deep neural network to approximate the Q function. By training a neural network, we can take the state as input and output the corresponding Q value for each action. In this way, we can select the optimal action through the neural network and no longer need to maintain a huge Q table. The use of deep neural networks makes the Q-learning algorithm more suitable for large and complex problems and has achieved significant performance improvements.

The core idea of ​​DQN is to learn the approximation of the Q function through a neural network, with the state as input and the action as output. Specifically, DQN uses a deep convolutional neural network (CNN) to process the game state and output the Q-value of each action. Then, DQN selects actions based on a greedy strategy or a random strategy under a certain probability. At each time step, DQN passes the current state and selected action to the environment and obtains the reward and next state. Using this information, DQN updates the parameters of the neural network, gradually improving the approximation of the Q function, making it closer to the actual Q function.

The core advantage of the DQN algorithm is to learn complex strategies in high-dimensional state space and discrete action space without manually designing features and rules. In addition, DQN also has the following features:

DQN uses Experience Replay to balance exploration and utilization. Experience replay is a technology that stores and reuses previous experiences to improve training efficiency and stability. Specifically, DQN stores experience tuples (including states, actions, rewards, and next states) in a buffer, and then randomly extracts a batch of experiences from the buffer for training. This method avoids using only the latest experience each time, but uses previous experience for training, thus providing a richer sample space. Through experience replay, DQN can more effectively learn the dynamics of the environment and the long-term impact of the strategy, improving the performance and stability of the algorithm.

2. Target Network: DQN uses the Target Network to reduce the fluctuation of the objective function. Specifically, DQN uses two neural networks, one is the main network (Main Network), used to select actions and calculate the Q value; the other is the target network, used to calculate the target Q value. The parameters of the target network are updated regularly to maintain a certain difference from the main network. This can reduce the fluctuation of the objective function, thereby improving the stability and convergence speed of training.

3.Double DQN: DQN uses Double DQN to solve the estimation bias problem. Specifically, Double DQN uses the main network to select the optimal action and the target network to calculate the Q value. This reduces estimation bias and improves learning efficiency and stability.

In short, DQN is a very powerful deep reinforcement learning algorithm that can learn complex strategies in discrete action spaces and has good stability and convergence speed. It has been widely used in various fields, such as games, robot control, natural language processing, etc., and has made important contributions to the development of artificial intelligence.

The above is the detailed content of Understand how deep Q-networks work. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
Tool Calling in LLMsTool Calling in LLMsApr 14, 2025 am 11:28 AM

Large language models (LLMs) have surged in popularity, with the tool-calling feature dramatically expanding their capabilities beyond simple text generation. Now, LLMs can handle complex automation tasks such as dynamic UI creation and autonomous a

How ADHD Games, Health Tools & AI Chatbots Are Transforming Global HealthHow ADHD Games, Health Tools & AI Chatbots Are Transforming Global HealthApr 14, 2025 am 11:27 AM

Can a video game ease anxiety, build focus, or support a child with ADHD? As healthcare challenges surge globally — especially among youth — innovators are turning to an unlikely tool: video games. Now one of the world’s largest entertainment indus

UN Input On AI: Winners, Losers, And OpportunitiesUN Input On AI: Winners, Losers, And OpportunitiesApr 14, 2025 am 11:25 AM

“History has shown that while technological progress drives economic growth, it does not on its own ensure equitable income distribution or promote inclusive human development,” writes Rebeca Grynspan, Secretary-General of UNCTAD, in the preamble.

Learning Negotiation Skills Via Generative AILearning Negotiation Skills Via Generative AIApr 14, 2025 am 11:23 AM

Easy-peasy, use generative AI as your negotiation tutor and sparring partner. Let’s talk about it. This analysis of an innovative AI breakthrough is part of my ongoing Forbes column coverage on the latest in AI, including identifying and explaining

TED Reveals From OpenAI, Google, Meta Heads To Court, Selfie With MyselfTED Reveals From OpenAI, Google, Meta Heads To Court, Selfie With MyselfApr 14, 2025 am 11:22 AM

The ​TED2025 Conference, held in Vancouver, wrapped its 36th edition yesterday, April 11. It featured 80 speakers from more than 60 countries, including Sam Altman, Eric Schmidt, and Palmer Luckey. TED’s theme, “humanity reimagined,” was tailor made

Joseph Stiglitz Warns Of The Looming Inequality Amid AI Monopoly PowerJoseph Stiglitz Warns Of The Looming Inequality Amid AI Monopoly PowerApr 14, 2025 am 11:21 AM

Joseph Stiglitz is renowned economist and recipient of the Nobel Prize in Economics in 2001. Stiglitz posits that AI can worsen existing inequalities and consolidated power in the hands of a few dominant corporations, ultimately undermining economic

What is Graph Database?What is Graph Database?Apr 14, 2025 am 11:19 AM

Graph Databases: Revolutionizing Data Management Through Relationships As data expands and its characteristics evolve across various fields, graph databases are emerging as transformative solutions for managing interconnected data. Unlike traditional

LLM Routing: Strategies, Techniques, and Python ImplementationLLM Routing: Strategies, Techniques, and Python ImplementationApr 14, 2025 am 11:14 AM

Large Language Model (LLM) Routing: Optimizing Performance Through Intelligent Task Distribution The rapidly evolving landscape of LLMs presents a diverse range of models, each with unique strengths and weaknesses. Some excel at creative content gen

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.