What is error back propagation
The error back propagation method, also known as the Backpropagation algorithm, is a commonly used method for training neural networks method. It uses the chain rule to calculate the error between the neural network output and the label, and backpropagates the error to each node layer by layer to calculate the gradient of each node. These gradients can be used to update the weights and biases of the neural network, bringing the network gradually closer to the optimal solution. Through backpropagation, the neural network can automatically learn and adjust parameters to improve the performance and accuracy of the model.
In error backpropagation, we use the chain rule to calculate the gradient.
We have a neural network with an input x, an output y and a hidden layer. We calculate the gradient of each node in the hidden layer through backpropagation.
First, we need to calculate the error of each node. For the output layer, the error is the difference between the actual value and the predicted value; for the hidden layer, the error is the error of the next layer multiplied by the weight of the current layer. These errors will be used to adjust weights to minimize the difference between predictions and actual values.
Then, we use the chain rule to calculate the gradient. For each weight, we calculate its contribution to the error and then backpropagate this contribution to the previous layer.
Specifically, assume that our neural network has a weight w that connects two nodes. Then, the contribution of this weight to the error is the product of the weight and the error. We backpropagate this contribution to the previous layer by multiplying this contribution by the product of the output of the previous layer and the input of the current layer.
In this way, we can calculate the gradient of each node and then use these gradients to update the weights and biases of the network.
Detailed steps of error back propagation
Suppose we have a neural network with an input layer, a hidden layer and an output layer. The activation function of the input layer is a linear function, the activation function of the hidden layer is a sigmoid function, and the activation function of the output layer is also a sigmoid function.
Forward propagation
1. Input the training set data into the input layer of the neural network and obtain the activation value of the input layer.
2. Pass the activation value of the input layer to the hidden layer, and obtain the activation value of the hidden layer through non-linear transformation of the sigmoid function.
3. Pass the activation value of the hidden layer to the output layer, and obtain the activation value of the output layer through nonlinear transformation of the sigmoid function.
Calculate the error
The error is calculated using the cross-entropy loss between the activations of the output layer and the actual labels. Specifically, for each sample, the cross entropy between the predicted label and the actual label is calculated, and then this cross entropy is multiplied by the corresponding sample weight (the sample weight is usually determined based on the importance and distribution of the sample).
Backpropagation
1. Calculate the gradient of each node of the output layer
According to Chain rule, for each node, we calculate its contribution to the error, and then backpropagate this contribution to the previous layer. Specifically, for each node, we calculate its contribution to the error (i.e., the node's weight times the error), and then multiply this contribution by the product of the previous layer's output and the current layer's input. In this way, we get the gradient of each node of the output layer.
2. Calculate the gradient of each node in the hidden layer
Similarly, according to the chain rule, for each node, we calculate it contribution to the error, and then backpropagates this contribution to the previous layer. Specifically, for each node, we calculate its contribution to the error (i.e., the node's weight times the error), and then multiply this contribution by the product of the previous layer's output and the current layer's input. In this way, we get the gradient of each node in the hidden layer.
3. Update the weights and biases of the neural network
According to the gradient descent algorithm, for each weight, we calculate its contribution to the error The gradient is then multiplied by a learning rate (that is, a parameter that can control the update speed) to obtain the update amount of the weight. For each bias, we also need to calculate its gradient on the error, and then multiply this gradient by a learning rate to get the update amount for that bias.
Iterative training
Repeat the above process (forward propagation, calculation error, back propagation, update parameters) until the stopping criterion is met ( For example, the preset maximum number of iterations is reached or the error reaches the preset minimum value).
This is the detailed process of error backpropagation. It should be noted that in practical applications, we usually use more complex neural network structures and activation functions, as well as more complex loss functions and learning algorithms to improve the performance and generalization ability of the model.
The above is the detailed content of Concepts and steps of error backpropagation. For more information, please follow other related articles on the PHP Chinese website!

二元神经网络(BinaryNeuralNetworks,BNN)是一种神经网络,其神经元仅具有两个状态,即0或1。相对于传统的浮点数神经网络,BNN具有许多优点。首先,BNN可以利用二进制算术和逻辑运算,加快训练和推理速度。其次,BNN减少了内存和计算资源的需求,因为二进制数相对于浮点数来说需要更少的位数来表示。此外,BNN还具有提高模型的安全性和隐私性的潜力。由于BNN的权重和激活值仅为0或1,其模型参数更难以被攻击者分析和逆向工程。因此,BNN在一些对数据隐私和模型安全性有较高要求的应用中具

在时间序列数据中,观察之间存在依赖关系,因此它们不是相互独立的。然而,传统的神经网络将每个观察看作是独立的,这限制了模型对时间序列数据的建模能力。为了解决这个问题,循环神经网络(RNN)被引入,它引入了记忆的概念,通过在网络中建立数据点之间的依赖关系来捕捉时间序列数据的动态特性。通过循环连接,RNN可以将之前的信息传递到当前观察中,从而更好地预测未来的值。这使得RNN成为处理时间序列数据任务的强大工具。但是RNN是如何实现这种记忆的呢?RNN通过神经网络中的反馈回路实现记忆,这是RNN与传统神经

FLOPS是计算机性能评估的标准之一,用来衡量每秒的浮点运算次数。在神经网络中,FLOPS常用于评估模型的计算复杂度和计算资源的利用率。它是一个重要的指标,用来衡量计算机的计算能力和效率。神经网络是一种复杂的模型,由多层神经元组成,用于进行数据分类、回归和聚类等任务。训练和推断神经网络需要进行大量的矩阵乘法、卷积等计算操作,因此计算复杂度非常高。FLOPS(FloatingPointOperationsperSecond)可以用来衡量神经网络的计算复杂度,从而评估模型的计算资源使用效率。FLOP

模糊神经网络是一种将模糊逻辑和神经网络结合的混合模型,用于解决传统神经网络难以处理的模糊或不确定性问题。它的设计受到人类认知中模糊性和不确定性的启发,因此被广泛应用于控制系统、模式识别、数据挖掘等领域。模糊神经网络的基本架构由模糊子系统和神经子系统组成。模糊子系统利用模糊逻辑对输入数据进行处理,将其转化为模糊集合,以表达输入数据的模糊性和不确定性。神经子系统则利用神经网络对模糊集合进行处理,用于分类、回归或聚类等任务。模糊子系统和神经子系统之间的相互作用使得模糊神经网络具备更强大的处理能力,能够

RMSprop是一种广泛使用的优化器,用于更新神经网络的权重。它是由GeoffreyHinton等人在2012年提出的,并且是Adam优化器的前身。RMSprop优化器的出现主要是为了解决SGD梯度下降算法中遇到的一些问题,例如梯度消失和梯度爆炸。通过使用RMSprop优化器,可以有效地调整学习速率,并且自适应地更新权重,从而提高深度学习模型的训练效果。RMSprop优化器的核心思想是对梯度进行加权平均,以使不同时间步的梯度对权重的更新产生不同的影响。具体而言,RMSprop会计算每个参数的平方

深度学习在计算机视觉领域取得了巨大成功,其中一项重要进展是使用深度卷积神经网络(CNN)进行图像分类。然而,深度CNN通常需要大量标记数据和计算资源。为了减少计算资源和标记数据的需求,研究人员开始研究如何融合浅层特征和深层特征以提高图像分类性能。这种融合方法可以利用浅层特征的高计算效率和深层特征的强表示能力。通过将两者结合,可以在保持较高分类准确性的同时降低计算成本和数据标记的要求。这种方法对于那些数据量较小或计算资源有限的应用场景尤为重要。通过深入研究浅层特征和深层特征的融合方法,我们可以进一

模型蒸馏是一种将大型复杂的神经网络模型(教师模型)的知识转移到小型简单的神经网络模型(学生模型)中的方法。通过这种方式,学生模型能够从教师模型中获得知识,并且在表现和泛化性能方面得到提升。通常情况下,大型神经网络模型(教师模型)在训练时需要消耗大量计算资源和时间。相比之下,小型神经网络模型(学生模型)具备更高的运行速度和更低的计算成本。为了提高学生模型的性能,同时保持较小的模型大小和计算成本,可以使用模型蒸馏技术将教师模型的知识转移给学生模型。这种转移过程可以通过将教师模型的输出概率分布作为学生

SqueezeNet是一种小巧而精确的算法,它在高精度和低复杂度之间达到了很好的平衡,因此非常适合资源有限的移动和嵌入式系统。2016年,DeepScale、加州大学伯克利分校和斯坦福大学的研究人员提出了一种紧凑高效的卷积神经网络(CNN)——SqueezeNet。近年来,研究人员对SqueezeNet进行了多次改进,其中包括SqueezeNetv1.1和SqueezeNetv2.0。这两个版本的改进不仅提高了准确性,还降低了计算成本。SqueezeNetv1.1在ImageNet数据集上的精度


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version
