search
HomeTechnology peripheralsAIExplore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU

Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU

In time series data, there are dependencies between observations, so they are not independent of each other. However, traditional neural networks treat each observation as independent, which limits the model's ability to model time series data. To solve this problem, Recurrent Neural Network (RNN) was introduced, which introduced the concept of memory to capture the dynamic characteristics of time series data by establishing dependencies between data points in the network. Through recurrent connections, RNN can pass previous information into the current observation to better predict future values. This makes RNN a powerful tool for tasks involving time series data.

But how does RNN achieve this kind of memory?

RNN realizes memory through the feedback loop in the neural network. This is the main difference between RNN and traditional neural networks. Feedback loops allow information to be passed within layers, whereas feedforward neural networks have information passed only between layers. Therefore, there are different types of RNNs:

  • Recurrent Neural Network (RNN)
  • Long Short-Term Memory Network (LSTM)
  • Gate Controlled Recurrent Unit Network (GRU)

This article will introduce the concepts, similarities and differences of RNN, LSTM and GRU, as well as some of their advantages and disadvantages.

Recurrent Neural Network (RNN)

Through a feedback loop, the output of an RNN unit is also used as input by the same unit. Therefore, every RNN has two inputs: past and present. Using past information creates short-term memory.

For a better understanding, the feedback loop of the RNN unit can be expanded. The length of the expanded cell is equal to the number of time steps of the input sequence.

You can see how past observations are passed through the unfolded network as hidden states. In each cell, the input from the current time step, the hidden state from the previous time step, and the bias are combined and then constrained through an activation function to determine the hidden state at the current time step.

RNN can be used for one-to-one, one-to-many, many-to-one and many-to-many predictions.

Advantages of RNN

Due to its short-term memory, RNN can process sequential data and identify patterns in historical data. In addition, RNN is able to handle inputs of different lengths.

Disadvantages of RNN

RNN has the problem of vanishing gradient descent. In this case, the gradient used to update the weights during backpropagation becomes very small. Multiplying weights with gradients close to zero prevents the network from learning new weights. Stopping learning causes the RNN to forget what it has seen in longer sequences. The problem of vanishing gradient descent increases with the number of network layers.

Because RNN only retains recent information, the model has problems when considering past observations. Therefore, RNN only has short-term memory but no long-term memory.

In addition, since RNN uses backpropagation to update weights in time, the network will also suffer from gradient explosion and, if the ReLu activation function is used, it will be affected by dead ReLu units. The former may cause convergence problems, while the latter may cause learning to cease.

Long Short-Term Memory (LSTM)

LSTM is a special type of RNN that solves the problem of gradient disappearance in RNN.

The key to LSTM is the cell state, which is passed from the input to the output of the cell. The cell state allows information to flow along the entire chain with only smaller linear actions through three gates. Therefore, the cell state represents the long-term memory of the LSTM. These three gates are called forget gate, input gate and output gate respectively. These gates act as filters and control the flow of information and determine which information is kept or ignored.

The forgetting gate determines how much long-term memory should be retained. For this purpose, a sigmoid function is used to account for the importance of the cell state. The output varies between 0 and 1, with 0 retaining no information and 1 retaining all information about the cell state.

The input gate determines what information is added to the cell state and thus to long-term memory.

The output gate determines which parts of the cell state build the output. Therefore, the output gate is responsible for short-term memory.

In general, the state is updated through the forget gate and the input gate.

Advantages of LSTM

The advantages of LSTM are similar to RNN, the main advantage is that they can capture both long-term and short-term patterns of sequences. Therefore, they are the most commonly used RNNs.

Disadvantages of LSTM

Due to the more complex structure, the computational cost of LSTM is higher, resulting in longer training time.

Since LSTM also uses the temporal backpropagation algorithm to update weights, LSTM has the disadvantages of backpropagation, such as dead ReLu units, gradient explosion, etc.

Gated Recurrent Unit (GRU)

Similar to LSTM, GRU solves the vanishing gradient problem of simple RNN. However, the difference from LSTM is that GRU uses fewer gates and does not have a separate internal memory, i.e., the cell state. Therefore, GRU relies entirely on hidden states as memory, leading to a simpler architecture.

The reset gate is responsible for short-term memory as it determines how much past information to retain and ignore.

The update gate is responsible for long-term memory and is comparable to the forget gate of LSTM.

The hidden state of the current time step is determined based on two steps:

First, determine the candidate hidden state. The candidate state is a combination of the current input and the hidden state of the previous time step and the activation function. The influence of the previous hidden state on the candidate hidden state is controlled by the reset gate.

The second step is to combine the candidate hidden state with the hidden state of the previous time step to generate the current hidden state. How the previous hidden state and the candidate hidden state are combined is determined by the update gate.

If the value given by the update gate is 0, the previous hidden state is completely ignored and the current hidden state is equal to the candidate hidden state. If the update gate gives a value of 1, the opposite is true.

Advantages of GRU

Due to its simpler architecture compared to LSTM, GRU has higher computational efficiency and faster training speed. Just requires less memory.

Additionally, GRU has been shown to be more effective for smaller sequences.

Disadvantages of GRU

Since GRUs do not have separate hidden states and cell states, they may not take into account past observations like LSTM .

Similar to RNN and LSTM, GRU may also suffer from the shortcomings of backpropagation and timely update of weights, namely dead ReLu units and gradient explosion.

The above is the detailed content of Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft