search
HomeTechnology peripheralsAIImproving data annotation methods for large language models (LLM)

Improving data annotation methods for large language models (LLM)

Fine-tuning of a large-scale language model (LLM) is the process of retraining a pre-trained model using domain-specific data to adapt it to a specific task or domain. Data annotation plays a crucial role in the fine-tuning process and involves labeling data with specific information that the model needs to understand.

1. Principle of data annotation

Data annotation is to help the machine learning model better understand and process the data by adding metadata, such as labels, tags, etc., to the data. For the fine-tuning of large language models, the principle of data annotation is to provide guiding information to help the model better understand the language and context of a specific domain. Common data annotation methods include entity recognition, sentiment analysis, and relationship extraction.

2. Methods of data annotation

2.1 Entity recognition

Entity recognition is an information extraction technology whose purpose is to identify named entities and other types of entities from text entity. By annotating text, the model is able to understand and extract entity information.

Method of entity identification

BIO notation is a method used to mark the location of entities. Among them, B represents the beginning of the entity, I represents the interior of the entity, and O represents the non-entity. For example, "B-PER" represents the beginning of a person's name, "I-PER" represents the interior of a person's name, and "O" represents a non-entity. This method can help us identify entities in text, classify and analyze them.

②Entity category tag: In addition to location tags, specific tags can also be used to indicate the category of entities, such as "LOC" for location and "ORG" for organization.

2.2 Sentiment Analysis

The goal of sentiment analysis is to identify the author's emotional tendency from the text, which usually includes positive, negative and neutral emotions. The principle is to mark the emotional tendencies in the text so that the model can understand the emotional color behind the text. Through sentiment analysis, we can gain a deeper understanding of the emotional connotation of text.

Methods of sentiment analysis

①Emotional label: By marking the emotional tendency of the text, such as "positive" (positive), "negative" (negative), "neutral" (neutral), etc. .

②Emotional intensity mark: Sometimes the intensity of emotion can also be marked, such as "strongly positive", "strongly negative", "neutral", etc.

2.3 Relationship extraction

Relationship extraction refers to extracting the relationships between entities from text to help the model understand the connections and functions between entities. The principle is to annotate the associations between entities in the text so that the model can understand these relationships and thereby better perform information extraction and reasoning.

Methods for relationship extraction

①Relationship tags: Use specific tags to represent relationships between entities, such as "subject-object", "member-organization", etc. These tags can help the model understand the different types of relationships between entities so that it can be better applied to specific tasks.

The above data annotation method plays an important role in fine-tuning large language models. These methods provide the model with rich information, allowing it to better understand text data, thereby improving the performance and effectiveness of the model in domain-specific tasks.

3. Example description

Suppose we have a pre-trained language model and we want to fine-tune it for a question and answer task in the medical field. We need to annotate data from the medical domain so that the model can better understand the medical-related context.

3.1 Entity Recognition

We can annotate entities in medical texts, such as diseases, drugs, medical terms, etc. For example, for the sentence "Patient is hospitalized for heart disease", we can use BIO notation to label "Heart disease" as the "Disease" category.

3.2 Sentiment Analysis

In the medical field, sentiment analysis may be used to analyze patients’ emotional tendencies toward treatment plans, doctor attitudes, etc. For example, for the sentence "The patient is anxious about surgical treatment", we can label "anxiety" as "negative emotion".

3.3 Relation Extraction

In medical Q&A, it is crucial to identify the relationship between questions and answers. For example, for the question "What symptoms might indicate that a patient has diabetes?" we could label the relationship between "symptoms" and "diabetes".

Summary

Data annotation can provide the model with more contextual information through entity recognition, sentiment analysis, relationship extraction and other methods, allowing it to better understand the language and context of a specific domain. . This labeled data can help the model perform specific tasks more accurately. Through effective data annotation, the fine-tuned model can better adapt to the needs of specific fields and improve its performance and effectiveness in practical applications.

The above is the detailed content of Improving data annotation methods for large language models (LLM). For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
What is Graph of Thought in Prompt EngineeringWhat is Graph of Thought in Prompt EngineeringApr 13, 2025 am 11:53 AM

Introduction In prompt engineering, “Graph of Thought” refers to a novel approach that uses graph theory to structure and guide AI’s reasoning process. Unlike traditional methods, which often involve linear s

Optimize Your Organisation's Email Marketing with GenAI AgentsOptimize Your Organisation's Email Marketing with GenAI AgentsApr 13, 2025 am 11:44 AM

Introduction Congratulations! You run a successful business. Through your web pages, social media campaigns, webinars, conferences, free resources, and other sources, you collect 5000 email IDs daily. The next obvious step is

Real-Time App Performance Monitoring with Apache PinotReal-Time App Performance Monitoring with Apache PinotApr 13, 2025 am 11:40 AM

Introduction In today’s fast-paced software development environment, ensuring optimal application performance is crucial. Monitoring real-time metrics such as response times, error rates, and resource utilization can help main

ChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOApr 13, 2025 am 11:23 AM

“How many users do you have?” he prodded. “I think the last time we said was 500 million weekly actives, and it is growing very rapidly,” replied Altman. “You told me that it like doubled in just a few weeks,” Anderson continued. “I said that priv

Pixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaPixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaApr 13, 2025 am 11:20 AM

Introduction Mistral has released its very first multimodal model, namely the Pixtral-12B-2409. This model is built upon Mistral’s 12 Billion parameter, Nemo 12B. What sets this model apart? It can now take both images and tex

Agentic Frameworks for Generative AI Applications - Analytics VidhyaAgentic Frameworks for Generative AI Applications - Analytics VidhyaApr 13, 2025 am 11:13 AM

Imagine having an AI-powered assistant that not only responds to your queries but also autonomously gathers information, executes tasks, and even handles multiple types of data—text, images, and code. Sounds futuristic? In this a

Applications of Generative AI in the Financial SectorApplications of Generative AI in the Financial SectorApr 13, 2025 am 11:12 AM

Introduction The finance industry is the cornerstone of any country’s development, as it drives economic growth by facilitating efficient transactions and credit availability. The ease with which transactions occur and credit

Guide to Online Learning and Passive-Aggressive AlgorithmsGuide to Online Learning and Passive-Aggressive AlgorithmsApr 13, 2025 am 11:09 AM

Introduction Data is being generated at an unprecedented rate from sources such as social media, financial transactions, and e-commerce platforms. Handling this continuous stream of information is a challenge, but it offers an

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment