search
HomeTechnology peripheralsAIExamples of Linear Regression: Methods for Predicting Continuous Variables

Examples of Linear Regression: Methods for Predicting Continuous Variables

Jan 22, 2024 pm 04:18 PM
machine learningAlgorithm concept

Linear regression is a commonly used machine learning algorithm used to predict the linear relationship between a continuous variable and one or more independent variables. This article will introduce how linear regression works and demonstrate the prediction process through an example and Python code.

1. Working principle of linear regression

Linear regression is a supervised learning algorithm that uses a set of independent variables (or features) to Predict the value of a continuous variable. In simple linear regression, only one independent variable predicts the value of the dependent variable; in multiple linear regression, there are multiple independent variables predicting the value of the dependent variable. This algorithm can be used to predict the values ​​of continuous variables such as house prices and sales. By finding the line of best fit, linear regression can provide predictions and explanations of the dependent variable.

The basic idea of ​​linear regression is to minimize the error between the predicted value and the actual value by finding a best-fitting straight line. The straight line can be expressed in the form of y=mx b, where y represents the dependent variable, x represents the independent variable, m represents the slope, and b represents the intercept.

To find the best-fitting straight line, we use the least squares method. The core idea of ​​this method is to find a straight line that minimizes the sum of the distances of all data points to the straight line.

2. Example of Linear Regression

Now let’s look at an example. Suppose we have a set of data representing the housing area of ​​a certain city. and price. We want to use linear regression to predict the price of an area of ​​​​a house. We can take the area of ​​the house as the independent variable x and the price as the dependent variable y.

Examples of Linear Regression: Methods for Predicting Continuous Variables

First, we need to import the necessary libraries and data:

import numpy as np
import matplotlib.pyplot as plt

# 数据
x = np.array([70, 80, 100, 120, 150, 180, 200])
y = np.array([320, 360, 420, 480, 600, 720, 800])

Next, we can plot the scatter points of the data Figure:

plt.scatter(x, y)
plt.xlabel('房屋面积(平方米)')
plt.ylabel('价格(万元)')
plt.show()

It can be seen from the scatter plot that there is a certain linear relationship between house area and price. Now we can use linear regression to fit the data and predict the price of a new house square footage.

from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(x.reshape(-1, 1), y)

# 预测房屋面积为120平方米的价格
new_x = np.array([120])
predicted_y = model.predict(new_x.reshape(-1, 1))
print(predicted_y) # 输出 [452.85714286]

We use the LinearRegression model in the Scikit-learn library to create a linear regression model and train it using the training data. Then, we used the model to predict the price of a new house with an area of ​​​​120 square meters, and the predicted result was 452,857 yuan.

Finally, we can draw the fitting straight line and the prediction results:

# 绘制拟合直线
line_x = np.linspace(50, 220, 100)
line_y = model.predict(line_x.reshape(-1, 1))
plt.plot(line_x, line_y, color='r')

#绘制预测结果
plt.scatter(new_x, predicted_y, color='g')

# 绘制原始数据
plt.scatter(x, y)

# 添加标签和标题
plt.xlabel('房屋面积(平方米)')
plt.ylabel('价格(万元)')
plt.title('房屋面积与价格的线性关系')

plt.show()

As can be seen from the above figure, the fitting straight line fits the data well, And the prediction results are relatively accurate.

3. Summary

This article introduces the working principle of linear regression and demonstrates how to use Python to perform linear regression through a practical example predict. Linear regression is a simple but effective machine learning algorithm that can be used to solve many practical problems, such as housing price prediction, sales prediction, etc. In practical applications, we need to select appropriate features and models according to specific problems, and perform data preprocessing and model optimization to obtain better prediction results.

The above is the detailed content of Examples of Linear Regression: Methods for Predicting Continuous Variables. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
What is Graph of Thought in Prompt EngineeringWhat is Graph of Thought in Prompt EngineeringApr 13, 2025 am 11:53 AM

Introduction In prompt engineering, “Graph of Thought” refers to a novel approach that uses graph theory to structure and guide AI’s reasoning process. Unlike traditional methods, which often involve linear s

Optimize Your Organisation's Email Marketing with GenAI AgentsOptimize Your Organisation's Email Marketing with GenAI AgentsApr 13, 2025 am 11:44 AM

Introduction Congratulations! You run a successful business. Through your web pages, social media campaigns, webinars, conferences, free resources, and other sources, you collect 5000 email IDs daily. The next obvious step is

Real-Time App Performance Monitoring with Apache PinotReal-Time App Performance Monitoring with Apache PinotApr 13, 2025 am 11:40 AM

Introduction In today’s fast-paced software development environment, ensuring optimal application performance is crucial. Monitoring real-time metrics such as response times, error rates, and resource utilization can help main

ChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOApr 13, 2025 am 11:23 AM

“How many users do you have?” he prodded. “I think the last time we said was 500 million weekly actives, and it is growing very rapidly,” replied Altman. “You told me that it like doubled in just a few weeks,” Anderson continued. “I said that priv

Pixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaPixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaApr 13, 2025 am 11:20 AM

Introduction Mistral has released its very first multimodal model, namely the Pixtral-12B-2409. This model is built upon Mistral’s 12 Billion parameter, Nemo 12B. What sets this model apart? It can now take both images and tex

Agentic Frameworks for Generative AI Applications - Analytics VidhyaAgentic Frameworks for Generative AI Applications - Analytics VidhyaApr 13, 2025 am 11:13 AM

Imagine having an AI-powered assistant that not only responds to your queries but also autonomously gathers information, executes tasks, and even handles multiple types of data—text, images, and code. Sounds futuristic? In this a

Applications of Generative AI in the Financial SectorApplications of Generative AI in the Financial SectorApr 13, 2025 am 11:12 AM

Introduction The finance industry is the cornerstone of any country’s development, as it drives economic growth by facilitating efficient transactions and credit availability. The ease with which transactions occur and credit

Guide to Online Learning and Passive-Aggressive AlgorithmsGuide to Online Learning and Passive-Aggressive AlgorithmsApr 13, 2025 am 11:09 AM

Introduction Data is being generated at an unprecedented rate from sources such as social media, financial transactions, and e-commerce platforms. Handling this continuous stream of information is a challenge, but it offers an

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools