Reinforcement learning policy gradient algorithm
The policy gradient algorithm is an important reinforcement learning algorithm. Its core idea is to search for the best strategy by directly optimizing the policy function. Compared with the method of indirectly optimizing the value function, the policy gradient algorithm has better convergence and stability, and can handle continuous action space problems, so it is widely used. The advantage of this algorithm is that it can directly learn the policy parameters without the need for an estimated value function. This enables the policy gradient algorithm to cope with the complex problems of high-dimensional state space and continuous action space. In addition, the policy gradient algorithm can also approximate the gradient through sampling, thereby improving computational efficiency. In short, the policy gradient algorithm is a powerful and flexible method. In the policy gradient algorithm, we need to define a policy function\pi(a|s), which gives The probability of taking action a in state s. Our goal is to optimize this policy function so that it produces the maximum expected reward in the sense of long-term cumulative reward. Specifically, we need to maximize the expected return J(\theta) of the policy function:
J(\theta)=\mathbb{E}_{\tau\sim p_\ theta(\tau)}[R(\tau)]
Among them, \theta is the parameter of the strategy function, \tau represents a trajectory, and p_\theta(\tau) is the strategy The function generates the probability distribution of trajectory \tau, and R(\tau) is the return of trajectory \tau.
In order to maximize the expected return J(\theta), we need to optimize the policy function and use the gradient ascent algorithm. Specifically, we need to calculate the gradient of the policy function\nabla_\theta J(\theta), and then update the parameters of the policy function\theta according to the direction of the gradient. The gradient of the policy function can be calculated using importance sampling and logarithmic gradient techniques.
\nabla_\theta J(\theta)=\mathbb{E}_{\tau\sim p_\theta(\tau)}[\sum_{t=0}^ {T-1}\nabla_\theta\log\pi(a_t|s_t)R(\tau)]
Where, T is the length of the trajectory, \log\pi(a_t |s_t) is the logarithm of the policy function, which represents the logarithm of the probability of taking action a_t in state s_t, and R(\tau) is the reward of the trajectory.
The policy gradient algorithm can use different optimization methods to update the parameters of the policy function. Among them, gradient-based optimization method is a commonly used method. Specifically, we can use the stochastic gradient ascent algorithm (SGA) to update the parameters of the policy function, the formula is as follows:
\theta_{t 1}=\theta_t \alpha\nabla_\ theta\hat{J}(\theta_t)
where \alpha is the learning rate, \hat{J}(\theta_t) is the expectation estimated using the average return of a batch of trajectories Return J(\theta_t). In practical applications, we can use neural networks to represent the policy function, then use the backpropagation algorithm to calculate the gradient of the policy function, and use the optimizer to update the parameters of the policy function.
The policy gradient algorithm has many variants, such as the baseline policy gradient algorithm, Actor-Critic algorithm, TRPO algorithm and PPO algorithm, etc. These algorithms all use different techniques to improve the performance and stability of the policy gradient algorithm. For example, the baseline policy gradient algorithm reduces variance by introducing a baseline function, the Actor-Critic algorithm improves efficiency by introducing a value function, the TRPO algorithm ensures convergence by limiting the update amplitude of the policy function, and the PPO algorithm uses techniques such as shearing and cropping To balance the update of the policy function and ensure stability.
The policy gradient algorithm is widely used in practice and has been successfully used in many fields, such as robot control, game playing, natural language processing, etc. It has many advantages, such as the ability to handle continuous action space problems, better convergence and stability, etc. However, the policy gradient algorithm also has some problems, such as slow convergence and vulnerability to local optimal solutions. Therefore, future research needs to further improve the policy gradient algorithm to improve its performance and application range.
The above is the detailed content of Reinforcement learning policy gradient algorithm. For more information, please follow other related articles on the PHP Chinese website!

Scientists have extensively studied human and simpler neural networks (like those in C. elegans) to understand their functionality. However, a crucial question arises: how do we adapt our own neural networks to work effectively alongside novel AI s

Google's Gemini Advanced: New Subscription Tiers on the Horizon Currently, accessing Gemini Advanced requires a $19.99/month Google One AI Premium plan. However, an Android Authority report hints at upcoming changes. Code within the latest Google P

Despite the hype surrounding advanced AI capabilities, a significant challenge lurks within enterprise AI deployments: data processing bottlenecks. While CEOs celebrate AI advancements, engineers grapple with slow query times, overloaded pipelines, a

Handling documents is no longer just about opening files in your AI projects, it’s about transforming chaos into clarity. Docs such as PDFs, PowerPoints, and Word flood our workflows in every shape and size. Retrieving structured

Harness the power of Google's Agent Development Kit (ADK) to create intelligent agents with real-world capabilities! This tutorial guides you through building conversational agents using ADK, supporting various language models like Gemini and GPT. W

summary: Small Language Model (SLM) is designed for efficiency. They are better than the Large Language Model (LLM) in resource-deficient, real-time and privacy-sensitive environments. Best for focus-based tasks, especially where domain specificity, controllability, and interpretability are more important than general knowledge or creativity. SLMs are not a replacement for LLMs, but they are ideal when precision, speed and cost-effectiveness are critical. Technology helps us achieve more with fewer resources. It has always been a promoter, not a driver. From the steam engine era to the Internet bubble era, the power of technology lies in the extent to which it helps us solve problems. Artificial intelligence (AI) and more recently generative AI are no exception

Harness the Power of Google Gemini for Computer Vision: A Comprehensive Guide Google Gemini, a leading AI chatbot, extends its capabilities beyond conversation to encompass powerful computer vision functionalities. This guide details how to utilize

The AI landscape of 2025 is electrifying with the arrival of Google's Gemini 2.0 Flash and OpenAI's o4-mini. These cutting-edge models, launched weeks apart, boast comparable advanced features and impressive benchmark scores. This in-depth compariso


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Chinese version
Chinese version, very easy to use

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
