search
HomeTechnology peripheralsAIAI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation is one of the hottest fields recently. Various university laboratories, Internet giant AI Labs, and start-up companies have joined the AI ​​video generation track. The release of video generation models such as Pika, Gen-2, Show-1, VideoCrafter, ModelScope, SEINE, LaVie, and VideoLDM is even more eye-catching. v⁽ⁱ⁾

Everyone must be curious about the following questions:

  • Which video generation model is the best?
  • What are the specialties of each model?
  • What are the issues worthy of attention that need to be solved in the field of AI video generation?

To this end, we have launched VBench, a comprehensive "evaluation framework for video generation models", designed to provide users with information about the advantages, disadvantages and characteristics of various video models . Through VBench, users can understand the strengths and advantages of different video models.

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?


  • ##Paper: https://arxiv.org/abs /2311.17982
  • Code: https://github.com/Vchitect/VBench
  • ##Webpage: https://vchitect.github.io /VBench-project/
  • Paper title: VBench: Comprehensive Benchmark Suite for Video Generative Models
VBench is not only comprehensive and detailed It can accurately evaluate the video generation effect, and also provide evaluation that is in line with people's sensory experience, saving time and energy.

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

##VBench contains 16 layered and decoupled evaluation dimensions
  • VBench has open sourced the Prompt List system for Wensheng video generation and evaluation
  • VBench’s evaluation plan for each dimension is aligned with human perception and evaluation
  • VBench provides multi-perspective insights to facilitate future exploration of AI video generation

"VBench" - "Video Generation Model 》Comprehensive benchmark suiteAI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?AI video generation model - evaluation results

Open source AI Video generation model

#The performance of various open source AI video generation models on VBench is as follows.

#The performance of various open source AI video generation models on VBench. In the radar chart, we normalized the results for each dimension to be between 0.3 and 0.8 to visualize the comparison more clearly. AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

#The performance of various open source AI video generation models on VBench. AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

Among the above 6 models, it can be seen that VideoCrafter-1.0 and Show-1 have relative advantages in most dimensions.

Video generation model of startups

VBench currently provides two startups: Gen-2 and Pika Evaluation results of company models.

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?Performance of Gen-2 and Pika on VBench. In the radar chart, in order to visualize the comparison more clearly, we added VideoCrafter-1.0 and Show-1 as references, and normalized the evaluation results of each dimension to be between 0.3 and 0.8.

Производительность Gen-2 и Pika на VBench. Мы включили численные результаты VideoCrafter-1.0 и Show-1 в качестве ссылки.

Можно заметить, что Gen-2 и Pika имеют очевидные преимущества в качестве видео (качество видео), такие как согласованность времени (временная согласованность) и качество одного кадра (эстетическое качество и качество изображения). Качество), связанные с аспектами. С точки зрения семантической согласованности с подсказками пользовательского ввода (такими как действия человека и стиль внешнего вида), частичномерные модели с открытым исходным кодом будут лучше.

Модель генерации видео VS Модель генерации изображения

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

##Модель генерации видео VS Модель генерации изображения. Среди них SD1.4, SD2.1 и SDXL — модели генерации изображений.

Производительность модели генерации видео в 8 основных категориях сцен

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?



AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

в 8 основных категориях сцен в 8 различных категориях результаты оценки.

##VBench теперь имеет открытый исходный код и может быть установлен одним щелчком мыши

AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?

В настоящее время VBench полностью открытый исходный код и поддерживает установку в один клик. Приглашаем всех желающих поиграть, протестировать интересующие вас модели и вместе способствовать развитию сообщества производителей видео.

##Адрес открытого исходного кода: https://github.com/Vchitect/VBench

####################Мы также открыли исходный код серии подсказок Списки: https://github.com/Vchitect/VBench/tree/master/prompts, включая тесты для оценки в различных измерениях возможностей, а также тесты для оценки различного содержимого сценариев. #####################Облако слов слева показывает распределение высокочастотных слов в наших наборах подсказок, а на рисунке справа показана статистика количество подсказок в разных измерениях и категориях. ############Является ли VBench точным? ############Для каждого измерения мы рассчитали корреляцию между результатами оценки VBench и результатами ручной оценки, чтобы проверить соответствие нашего метода человеческому восприятию. На рисунке ниже горизонтальная ось представляет результаты ручной оценки в различных измерениях, а вертикальная ось показывает результаты автоматической оценки метода VBench. Видно, что наш метод полностью соответствует человеческому восприятию во всех измерениях. #####################VBench привносит мышление в создание видео с помощью искусственного интеллекта#############VBench может не только оценивать существующие модели, что еще более важно , также могут быть обнаружены различные проблемы, которые могут существовать в разных моделях, что дает ценную информацию для будущего развития генерации видео с помощью искусственного интеллекта. ###############«Временная непрерывность» и «динамический уровень видео»: не выбирайте один или другой, а улучшайте оба############ # ##Мы обнаружили, что существует определенное компромиссное соотношение между временной согласованностью (например, согласованностью объекта, согласованностью фона, плавностью движения) и амплитудой движения в видео (динамическая степень). Например, Show-1 и VideoCrafter-1.0 показали себя очень хорошо с точки зрения согласованности фона и плавности действий, но получили более низкую оценку с точки зрения динамики; это может быть связано с тем, что сгенерированные «недвижущиеся» изображения с большей вероятностью появляются «во времени». «Очень связно». VideoCrafter-0.9, с другой стороны, слабее по параметру, связанному с согласованностью времени, но имеет высокие показатели по динамической степени. ######

Это показывает, что действительно трудно одновременно достичь «временной согласованности» и «более высокого динамического уровня»; в будущем нам следует сосредоточиться не только на улучшении одного аспекта, но также улучшить «временной уровень» связность» И «динамический уровень видео», это имеет смысл.

Оценивайте по содержимому сцены, чтобы изучить потенциал каждой модели

##Некоторые модели хорошо себя зарекомендовали в разных категориях. большие различия в производительности. Например, с точки зрения эстетического качества CogVideo хорошо работает в категории «Еда», но получает более низкие оценки в категории «Стиль жизни». Если данные обучения скорректированы, можно ли улучшить эстетическое качество CogVideo в категориях «LifeStyle», тем самым улучшив общее эстетическое качество видео модели?

Это также говорит нам о том, что при оценке моделей генерации видео нам необходимо учитывать производительность модели в различных категориях или темах, исследовать верхний предел модели в определенном измерении возможностей. , а затем выберите «Улучшить категорию сценария «сдерживание».

Категории со сложным движением: плохие пространственно-временные характеристики

#Категории с высокой пространственной сложностью, баллы по измерению эстетического качества являются относительно низкими. Например, категория «Стиль жизни» предъявляет относительно высокие требования к расположению сложных элементов в пространстве, а категория «Человек» предъявляет проблемы из-за генерации навесных конструкций.

Для категорий со сложным расчетом времени, таких как категория «Человек», которая обычно включает в себя сложные движения, и категория «Транспортное средство», которая часто движется быстрее, они получают одинаковые баллы по всем тестируемым параметрам. низкий. Это показывает, что текущая модель все еще имеет определенные недостатки в обработке временного моделирования.Ограничения временного моделирования могут привести к пространственному размытию и искажению, что приводит к неудовлетворительному качеству видео как во времени, так и в пространстве.

Сложно генерировать категории: мало пользы от увеличения объема данных

#Мы используем широко используемый набор видеоданных WebVid - Компания 10M провела статистику и обнаружила, что около 26% данных относятся к категории «Человек», что составляет самую высокую долю среди восьми посчитанных нами категорий. Однако по результатам оценки категория «Человек» оказалась одной из худших среди восьми категорий.

Это показывает, что для такой сложной категории, как «Человек», простое увеличение объема данных может не привести к значительному повышению производительности. Одним из потенциальных методов является управление изучением модели путем введения предшествующих знаний или средств контроля, связанных с «человеком», таких как скелеты и т. д.

Миллионы наборов данных: улучшение качества данных имеет приоритет над количеством данных

Хотя категория «Продовольствие» Занимает всего 11% от WebVid-10M, он почти всегда имеет высшую оценку эстетического качества в обзоре. Поэтому мы дополнительно проанализировали показатели эстетического качества различных категорий контента в наборе данных WebVid-10M и обнаружили, что категория «Еда» также имела самый высокий эстетический балл в WebVid-10M.

Это означает, что на основе миллионов данных фильтрация/улучшение качества данных более полезно, чем увеличение объема данных.

Возможность улучшить: Точно генерировать несколько объектов и взаимосвязь между объектами

Текущее создание видео Модель все еще не может догнать модель генерации изображений (особенно SDXL) с точки зрения «множественных объектов» и «пространственных отношений», что подчеркивает важность улучшения возможностей комбинирования. Так называемая способность комбинирования означает, может ли модель точно отображать несколько объектов при создании видео, а также пространственные и интерактивные отношения между ними.

Потенциальные решения этой проблемы могут включать в себя:

  • Маркировка данных: создание набора видеоданных для предоставления четкого описания нескольких объектов. , а также описание пространственно-позиционных отношений и взаимодействий между объектами.
  • Добавляйте промежуточные режимы/модули в процессе создания видео, чтобы помочь контролировать комбинацию и пространственное положение объектов.
  • #Использование более качественного кодировщика текста (Text Encoder) также окажет большее влияние на способность комбинированной генерации модели.
  • Кривая, чтобы спасти страну: передайте проблему «комбинации объектов», с которой T2V не может справиться, T2I, и сгенерируйте видео через T2I I2V. Этот подход также может быть эффективен для решения многих других задач генерации видео.

The above is the detailed content of AI video generation framework test competition: Pika, Gen-2, ModelScope, SEINE, who can win?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
What is Graph of Thought in Prompt EngineeringWhat is Graph of Thought in Prompt EngineeringApr 13, 2025 am 11:53 AM

Introduction In prompt engineering, “Graph of Thought” refers to a novel approach that uses graph theory to structure and guide AI’s reasoning process. Unlike traditional methods, which often involve linear s

Optimize Your Organisation's Email Marketing with GenAI AgentsOptimize Your Organisation's Email Marketing with GenAI AgentsApr 13, 2025 am 11:44 AM

Introduction Congratulations! You run a successful business. Through your web pages, social media campaigns, webinars, conferences, free resources, and other sources, you collect 5000 email IDs daily. The next obvious step is

Real-Time App Performance Monitoring with Apache PinotReal-Time App Performance Monitoring with Apache PinotApr 13, 2025 am 11:40 AM

Introduction In today’s fast-paced software development environment, ensuring optimal application performance is crucial. Monitoring real-time metrics such as response times, error rates, and resource utilization can help main

ChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOApr 13, 2025 am 11:23 AM

“How many users do you have?” he prodded. “I think the last time we said was 500 million weekly actives, and it is growing very rapidly,” replied Altman. “You told me that it like doubled in just a few weeks,” Anderson continued. “I said that priv

Pixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaPixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaApr 13, 2025 am 11:20 AM

Introduction Mistral has released its very first multimodal model, namely the Pixtral-12B-2409. This model is built upon Mistral’s 12 Billion parameter, Nemo 12B. What sets this model apart? It can now take both images and tex

Agentic Frameworks for Generative AI Applications - Analytics VidhyaAgentic Frameworks for Generative AI Applications - Analytics VidhyaApr 13, 2025 am 11:13 AM

Imagine having an AI-powered assistant that not only responds to your queries but also autonomously gathers information, executes tasks, and even handles multiple types of data—text, images, and code. Sounds futuristic? In this a

Applications of Generative AI in the Financial SectorApplications of Generative AI in the Financial SectorApr 13, 2025 am 11:12 AM

Introduction The finance industry is the cornerstone of any country’s development, as it drives economic growth by facilitating efficient transactions and credit availability. The ease with which transactions occur and credit

Guide to Online Learning and Passive-Aggressive AlgorithmsGuide to Online Learning and Passive-Aggressive AlgorithmsApr 13, 2025 am 11:09 AM

Introduction Data is being generated at an unprecedented rate from sources such as social media, financial transactions, and e-commerce platforms. Handling this continuous stream of information is a challenge, but it offers an

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft